

Co-simulation of quench transients in the HiLumi recombination dipole magnet combining STEAM-LEDET and STEAM-PyBBQ

Lennard Bender (CERN / Hochschule Karlsruhe)

STEAM

16 September 2022

Acknowledgements

Special thanks to: B.Caiffi, P.Fabbricatore and MBRD team (INFN-Genoa), A. Foussat, T.Mulder, E.Ravaioli, G.Willering, M.Wozniak and SM18 team **Presentation outline**

Including longitudinal quench propagation for QH protected magnets

Validation process of co-simulation

Alternative protection of MBRD magnet to decrease hot-spot temperature and voltage to ground

What is the goal of quench protection?

Validation – Co-simulation MBRD magnet

STEAM tools - 2022

Recombination dipole magnet MBRD

Parameter	Value
Bore magnetic field	4.5 T
Peak magnetic field	5.28 T
Nominal current	12340 A
Ultimate current	13357 A
Magnetic length	7.78 m / 1.378 m
Number of blocks	5

Quench heaters and quench propagation

• After the QH firing, the normal zone is propagating from each heating station into both, longitudinal directions

Introduction of quench propagation scaling at low currents

- Poor fit for STEAM-LEDET 2D model at low currents [1]
- Improvement by implementing 2D+1D extension [2]
- 2D+1D includes longitudinal quench propagation between heating stations [3]
- Improved simulation by including scaled quench propagation due to helium cooling
- [1] E. Ravaioli, B. Auchmann, M. Maciejewski, H. ten Kate, and A. Verweij, "Lumped-element dynamic electro-thermal model of a superconducting magnet," Cryogenics, 2016. [Online]. Available: <u>http://www.sciencedirect.com/science/article/pii/S0011227516300832</u>
- [2] M. Janitschke, M. Mentink, F. Murgia, D. Pracht, E. Ravaioli, A.P. Verweij, "A simplified approach to simulate quench development in a superconducting magnet", <u>IEEE Trans. on Appl. SC, 2021</u>

[3] Marvin Janitschke: 2nd STEAM Workshop (11-October 15, 2021): Thermal analysis of quench-heater heating stations using STEAM-BBQ · Indico (cern.ch)

Validation – Co-simulation MBRD magnet

-100 -50 0 50 100 x [mm] **Presentation outline**

Including longitudinal quench propagation for QH protected magnets

Validation process of co-simulation

Alternative protection of MBRD magnet to decrease hot-spot temperature and voltage to ground

STEAM-PyBBQ (BusBar Quench in python)

• STEAM-PyBBQ implemented tool in python by T. Mulder [4]

- Able to simulate quench propagation in a cable with and without helium cooling
- Quench initiation through power input at one conductor side
- Crucial to include external and internal cooling of the cable to simulate quench propagation at low currents

[4] T. Mulder, "Documentation", Available: <u>STEAM / steam-pyBBQ · GitLab (cern.ch</u>)

Validation – Co-simulation MBRD magnet

Validation of PyBBQ

- Comparison to STEAM-LEDET 3D and STEAM-BBQ [5], [6]
- Good fit for basic case without insulation and cooling
- Analytical calculation not applicable, further investigations necessary
- STEAM-PyBBQ and STEAM-BBQ show similar behaviour for multi-strand cable and cooling

STEAM-PyBBQ can be seen as validated

[5] E. Ravaioli, O. Tranum Arnegaard, A. Verweij, M. Wozniak, "Quench Transient Simulation in a Self-Protected Magnet With a 3-D Finite-Difference Scheme", IEEE Trans. on Appl. SC, 2022.

[6] M. Mentink et al., "Quench Behavior of the HL-LHC Twin Aperture Orbit Correctors", IEEE Trans. on Appl. Supercond. 28, p 4004806 (2018)

QH heating stations in STEAM-PyBBQ

 No quench propagation simulated by STEAM-PyBBQ for low current • Implementing a heating station leads to detectable quench propagation in the cable at low current

Validation – Co-simulation MBRD magnet

Co-simulation; setting conductor simulation

Co-simulation; running conductor simulation

Co-simulation; calculating quench propagation scaling

Co-simulation; setting magnet simulation

Co-simulation; running magnet simulation

Quench start at high current

- Variation of the amount of helium inside the cable
- Voltage jumps caused by quench heaters
- Manipulation of heater contact to strands possible

Quench start at high current

- Variation of the amount of helium inside the cable
- Voltage jumps caused by quench heaters
- Manipulation of heater contact to strands possible
- Matching quench start for fraction_inner_voids at 2 %
- Best fitting discharge at fraction_inner_voids = 2 %
- Faster discharge at quench start, slower discharge before energy extraction triggering

Behaviour of differential voltage

- Variation of the amount of helium inside the cable
- Voltage jumps caused by quench heaters
- Manipulation of heater contact to strands possible
- Matching quench start for fraction_inner_voids at 2 %
- Best fitting discharge at fraction_inner_voids = 2 %
- Faster discharge at quench start, slower discharge before energy extraction triggering
- Similar behaviour visible in global differential voltage

Simulation results of the MBRD

Validated STEAM-LEDET model of the MBRD magnet

- Using the 2D+1D option including quench propagation between heating stations and to turns that are not yet quenched
- Typical RMS error divided by peak value: 1 % for the current and 2-10 % for the voltage

Simulation results of the MBRD

Validated STEAM-LEDET model of the MBRD magnet

- Using the 2D+1D option including quench propagation between heating stations and to turns that are not yet quenched
- Typical RMS error divided by peak value: 1 % for the current and 2-10 % for the voltage

Presentation outline

Including longitudinal quench propagation for QH protected magnets

Validation process of co-simulation

Alternative protection of MBRD magnet to decrease hot-spot temperature and voltage to ground

MBRD prototype; Baseline

MBRD prototype; Failure 1

MBRD prototype; Failure 2

MBRD prototype; Failure 3

Simulation results of the MBRD prototype

- In the baseline 8 QH strips out of 16 are used
- Failure cases simulated at nominal current

Case	T_adiabatic [K]	Peak voltage to ground [V]	Peak turn to turn voltage [V]
Nominal	292	76	48
Ultimate	348	95	64
Failure 1	336	303	56
Failure 2	410	335	70
Failure 3	410	713	70

→ T_adiabatic is calculated by assuming that a quench occurred 27 ms before the quench detection is triggered

CERN

Validation – Co-simulation MBRD magnet

Failure 3

Alternative protection; Baseline

Alternative protection; Failure 1

Alternative protection; Failure 2

Alternative protection; Failure 3

Alternative protection for the MBRD prototype

- Significant improvement of hot-spot temperature and voltage to ground
- Alternative: 16 QH strips out of 16 are used
- Failure cases simulated at nominal current

→ T_adiabatic is calculated by assuming that a quench occurred 27 ms before the quench detection is triggered

CERN

180

160

140 🗲

Temperature [

80

60

x [mm]

• Simulation of QH discharges can be made more accurate, especially at low current, if the quench propagation between heating stations is included in the simulation

• Simulation of QH discharges can be made more accurate, especially at low current, if the quench propagation between heating stations is included in the simulation

• Simulation of QH discharges can be made more accurate, especially at low current, if the quench propagation between heating stations is included in the simulation

• STEAM-PyBBQ: New tool is now validated for cases with and without cooling

• Co-simulation analysis based on YAML files to be consistent, repeatable, versioned and traceable

• Simulation of QH discharges can be made more accurate, especially at low current, if the quench propagation between heating stations is included in the simulation

- STEAM-PyBBQ: New tool is now validated for cases with and without cooling
 - Co-simulation analysis based on YAML files to be consistent, repeatable, versioned and traceable
 - HL-LHC MBRD STEAM-LEDET model validated against experimental results

HILUMO CERN STEAM

Simulation of QH discharges can be made more accurate, especially at low current, if the quench propagation between heating stations is included in the simulation

Studied nominal and failure cases for the HL-LHC baseline case, and an alternative protection with double the QH units, which allows reducing the hot-spot temperature by 160 K and the peak voltage to ground by 44 %

STEAM-PyBBQ: New tool is now validated for

cases with and without cooling

against experimental results

Annex: Coil and block voltages

- Coil voltages show similar behaviour as differential voltage
- Underestimation before energy extraction triggering not yet understood
- Block voltages of coil 2A show good overall agreement for blocks in contact to quench heaters
- Outer blocks don't quench but develop inductive voltage

Block voltages

Voltage block 4 and 5

Validation Co-simulation MBRD magnet

Annex: Improvements at low currents

- Major improvement of simulated discharge at low currents by including QH in the PyBBQ simulation
- No changes at high currents due to including QH in PyBBQ

Annex: Variation of f_helium at low currents

- No impact on discharge current and differential voltage at low currents for high f_helium
- From certain f_helium quench propagation occurs

Validation – Co-simulation MBRD magnet

Annex: Variation of f_helium at high currents

- No impact at low currents for high f_helium
- From certain f_helium quench propagation occurs
- Negligible impact on high currents

Validation – Co-simulation MBRD magnet

Annex: Identifying value of f_helium

- No impact at low currents for high f_helium
- From certain f_helium quench propagation occurs
- Negligible impact on high currents
- Highest visible impact at 6000 A
- Less helium cooling accelerates discharge
- Best fit for f_helium at 0.7

Annex: Difference of simulated and measured quench start

- Time of quench at high current is simulated well
- At low current, the quench start is simulated too early
- Earlier start maybe due to underestimating the cooling along the longitudinal direction of a half turn

