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Presentation outline
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Including longitudinal quench propagation for QH 
protected magnets

Validation process of co-simulation

Alternative protection of MBRD magnet to decrease 
hot-spot temperature and voltage to ground
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What is the goal of quench protection?

3



logo

area Validation – Co-simulation MBRD magnet

STEAM tools - 2022
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E. Ravalioli and M. Wozniak, “STEAM framework – MPE-PE section meeting,” CERN, 07.19.2022, Available: https://indico.cern.ch/event/1183524/

BBQ(Comsol) → PyBBQ BBQ(GetDP)

FiQuS

SIGMA

LEDET

PROTECCT

SING → PySING

COSIM

Conductor

Magnet

Circuit

https://indico.cern.ch/event/1183524/
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Recombination dipole magnet MBRD
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Parameter Value

Bore magnetic field 4.5 T

Peak magnetic field 5.28 T

Nominal current 12340 A

Ultimate current 13357 A

Magnetic length 7.78 m / 1.378 m

Number of blocks 5
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Quench heaters and quench propagation

66

T

x

• After the QH firing, the normal zone is propagating from each heating station into both, 

longitudinal directions

400 mm 400 mm120 mm
Example MBRDP1 magnet:

vQ @ nominal current: ~15 m/s
13.3 ms 13.3 ms

All turns, attached to QH would quench in ~13.3 ms at nominal current

vQ @ 2 kA: 0.39 m/s

510 ms 510 ms

Marvin Janitschke: 2nd STEAM Workshop (11-October 15, 2021): Thermal analysis of quench-heater heating stations using STEAM-BBQ · Indico (cern.ch)

Note: quench propagation 

velocity calculated with 

PyBBQ including cooling

All turns, attached to QH would quench in ~510 ms at nominal current

https://indico.cern.ch/event/1060073/contributions/4454956/
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Introduction of quench propagation scaling at low currents
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• Poor fit for STEAM-LEDET  2D model 

at low currents [1]

• Improvement by implementing 2D+1D 

extension [2]

• 2D+1D includes longitudinal quench

propagation between heating stations [3] 

[1] E. Ravaioli, B. Auchmann, M. Maciejewski, H. ten Kate, and A. Verweij, “Lumped-element dynamic 

electro-thermal model of a superconducting magnet,” Cryogenics, 2016. [Online]. 

Available: http://www.sciencedirect.com/science/article/pii/S0011227516300832

[2] M. Janitschke, M. Mentink, F. Murgia, D. Pracht, E. Ravaioli, A.P. Verweij, "A simplified approach 

to simulate quench development in a superconducting magnet", IEEE Trans. on Appl. SC, 2021 

[3] Marvin Janitschke: 2nd STEAM Workshop (11-October 15, 2021): Thermal analysis of 

quench-heater heating stations using STEAM-BBQ · Indico (cern.ch)

➢ Improved simulation by including scaled 

quench propagation due to helium cooling

http://www.sciencedirect.com/science/article/pii/S0011227516300832
https://ieeexplore.ieee.org/document/9356128
https://indico.cern.ch/event/1060073/contributions/4454956/
https://indico.cern.ch/event/1060073/contributions/4454956/


logo

area Validation – Co-simulation MBRD magnet

Presentation outline

8

Including longitudinal quench propagation for QH 
protected magnets

Validation process of co-simulation

Alternative protection of MBRD magnet to decrease 
hot-spot temperature and voltage to ground
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STEAM-PyBBQ (BusBar Quench in python)
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• STEAM-PyBBQ implemented tool in 

python by T. Mulder [4]

• Able to simulate quench propagation in 

a cable with and without helium cooling

• Quench initiation through power input at 

one conductor side

• Crucial to include external and internal 

cooling of the cable to simulate quench 

propagation at low currents

[4] T. Mulder, “Documentation”, Available: STEAM / steam-pyBBQ · GitLab (cern.ch)

https://gitlab.cern.ch/steam/pybbq
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Validation of PyBBQ
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• Comparison to STEAM-LEDET 3D and 

STEAM-BBQ [5], [6]

• Good fit for basic case without insulation and cooling

• Analytical calculation not applicable, further investigations 

necessary

• STEAM-PyBBQ and STEAM-BBQ show similar behaviour 

for multi-strand cable and cooling  

[5] E. Ravaioli, O. Tranum Arnegaard, A. Verweij, M. Wozniak, "Quench Transient Simulation in a Self-Protected 

Magnet With a 3-D Finite-Difference Scheme", IEEE Trans. on Appl. SC, 2022.

[6] M. Mentink et al., “Quench Behavior of the HL-LHC Twin Aperture Orbit Correctors”, 

IEEE Trans. on Appl. Supercond. 28, p 4004806 (2018)

➢ STEAM-PyBBQ can be seen as validated
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QH heating stations in STEAM-PyBBQ
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• No quench propagation simulated by 

STEAM-PyBBQ for low current

• Implementing a heating station leads to detectable 

quench propagation in the cable at low current
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Co-simulation; setting conductor simulation
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Co-simulation; running conductor simulation 
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Co-simulation; calculating quench propagation scaling
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Co-simulation; setting magnet simulation
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Co-simulation; running magnet simulation
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➢ Consistent, repeatable and traceable 

co-simulation based on YAML files



logo

area Validation – Co-simulation MBRD magnet

Quench start at high current
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• Variation of the amount of helium inside the cable

• Voltage jumps caused by quench heaters

• Manipulation of heater contact to strands possible
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Quench start at high current
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• Variation of the amount of helium inside the cable

• Voltage jumps caused by quench heaters

• Manipulation of heater contact to strands possible

• Matching quench start for fraction_inner_voids at 2 %

• Best fitting discharge at fraction_inner_voids = 2 %

• Faster discharge at quench start, slower discharge 

before energy extraction triggering
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Behaviour of differential voltage 
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• Variation of the amount of helium inside the cable

• Voltage jumps caused by quench heaters

• Manipulation of heater contact to strands possible

• Matching quench start for fraction_inner_voids at 2 %

• Best fitting discharge at fraction_inner_voids = 2 %

• Faster discharge at quench start, slower discharge 

before energy extraction triggering

• Similar behaviour  visible in global differential voltage



logo

area Validation – Co-simulation MBRD magnet

Simulation results of the MBRD
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• Using the 2D+1D option including quench propagation between heating stations and 

to turns that are not yet quenched

• Typical RMS error divided by peak value: 1 % for the current and 2-10 % for the voltage

High current:

➢ Validated STEAM-LEDET model of the MBRD magnet
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Simulation results of the MBRD
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Low current:

• Using the 2D+1D option including quench propagation between heating stations and 

to turns that are not yet quenched

• Typical RMS error divided by peak value: 1 % for the current and 2-10 % for the voltage

➢ Validated STEAM-LEDET model of the MBRD magnet
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Including longitudinal quench propagation for QH 
protected magnets

Validation process of co-simulation

Alternative protection of MBRD magnet to decrease 
hot-spot temperature and voltage to ground
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MBRD prototype; Baseline

Case QH firing

Nominal QH_1; QH_3; QH_6; QH_8

Ultimate QH_1; QH_3; QH_6; QH_8

Failure 1 QH_1; QH_3; QH_6

Failure 2 QH_1; QH_3

Failure 3 QH_1; QH_6

Baseline:

23
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QH_2QH_4 QH_6
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QH_8

QH_7
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MBRD prototype; Failure 1

Case QH firing

Nominal QH_1; QH_3; QH_6; QH_8

Ultimate QH_1; QH_3; QH_6; QH_8

Failure 1 QH_1; QH_3; QH_6

Failure 2 QH_1; QH_3

Failure 3 QH_1; QH_6

Baseline:
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QH_3 QH_1

QH_2QH_4 QH_6

QH_5

QH_8

QH_7

a

b

1

2
3

45

1B

1A 2B

2A
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MBRD prototype; Failure 2

Case QH firing

Nominal QH_1; QH_3; QH_6; QH_8

Ultimate QH_1; QH_3; QH_6; QH_8

Failure 1 QH_1; QH_3; QH_6

Failure 2 QH_1; QH_3

Failure 3 QH_1; QH_6

Baseline:
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QH_3 QH_1

QH_2QH_4 QH_6

QH_5

QH_8

QH_7

a

b

1
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3
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MBRD prototype; Failure 3

Case QH firing

Nominal QH_1; QH_3; QH_6; QH_8

Ultimate QH_1; QH_3; QH_6; QH_8

Failure 1 QH_1; QH_3; QH_6

Failure 2 QH_1; QH_3

Failure 3 QH_1; QH_6

Baseline:

26

QH_3 QH_1

QH_2QH_4 QH_6

QH_5

QH_8

QH_7

a

b

1

2
3

45

1B
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Simulation results of the MBRD prototype
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Case T_adiabatic

[K]

Peak 

voltage to 

ground [V]

Peak turn to 

turn voltage 

[V]

Nominal 292 76 48

Ultimate 348 95 64

Failure 1 336 303 56

Failure 2 410 335 70

Failure 3 410 713 70

→ T_adiabatic is calculated 

by assuming that a quench 

occurred 27 ms before the 

quench detection is triggered

Failure 3

Failure 2

Failure 1

• In the baseline 8 QH strips out of 16 are used

• Failure cases simulated at nominal current
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Case QH firing

Nominal QH_1-8

Ultimate QH_1-8

Failure 1 QH_8 fails

Failure 2 QH_2; QH_6 failing

Failure 3 QH_3; QH_7 failing

Alternative protection; Baseline

Alternative:
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Case QH firing

Nominal QH_1-8

Ultimate QH_1-8

Failure 1 QH_8 fails

Failure 2 QH_2; QH_6 failing

Failure 3 QH_3; QH_7 failing

Alternative protection; Failure 1

Alternative:

29
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Case QH firing

Nominal QH_1-8

Ultimate QH_1-8

Failure 1 QH_8 fails

Failure 2 QH_2; QH_6 failing

Failure 3 QH_3; QH_7 failing

Alternative protection; Failure 2

Alternative:

30
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Case QH firing

Nominal QH_1-8

Ultimate QH_1-8

Failure 1 QH_8 fails

Failure 2 QH_2; QH_6 failing

Failure 3 QH_3; QH_7 failing

Alternative protection; Failure 3

Alternative:

31
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QH_2QH_4 QH_6
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QH_8
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Alternative protection for the MBRD prototype
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Case T_adiabatic 

[K]

Peak 

voltage to 

ground [V]

Peak turn to 

turn voltage 

[V]

8/16 16/16 8/16 16/16 8/16 16/16

Nominal 292 219 76 64 48 30

Ultimate 348 259 95 83 64 43

Failure 1 336 232 303 158 56 34

Failure 2 410 250 335 352 70 38

Failure 3 410 250 713 396 70 38

→ T_adiabatic is calculated 

by assuming that a quench 

occurred 27 ms before the 

quench detection is triggered

• Alternative: 16 QH strips out of 16 are used

• Failure cases simulated at nominal current

➢ Significant improvement of hot-spot temperature and voltage to ground
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• Simulation of QH discharges can be made more accurate, especially at low current, if the quench

propagation between heating stations is included in the simulation

Conclusion and lessons learned

33
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• Simulation of QH discharges can be made more accurate, especially at low current, if the quench

propagation between heating stations is included in the simulation

• STEAM-PyBBQ: New tool is now validated for 

cases with and without cooling

Conclusion and lessons learned

34
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• Simulation of QH discharges can be made more accurate, especially at low current, if the quench

propagation between heating stations is included in the simulation

• STEAM-PyBBQ: New tool is now validated for 

cases with and without cooling

• Co-simulation analysis based on YAML files to be 

consistent, repeatable, versioned and traceable

Conclusion and lessons learned

35
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• Simulation of QH discharges can be made more accurate, especially at low current, if the quench

propagation between heating stations is included in the simulation

• STEAM-PyBBQ: New tool is now validated for 

cases with and without cooling

• Co-simulation analysis based on YAML files to be 

consistent, repeatable, versioned and traceable

• HL-LHC MBRD STEAM-LEDET model validated 

against experimental results

Conclusion and lessons learned

36
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• Simulation of QH discharges can be made more accurate, especially at low current, if the quench

propagation between heating stations is included in the simulation

• STEAM-PyBBQ: New tool is now validated for 

cases with and without cooling

• Co-simulation analysis based on YAML files to be 

consistent, repeatable, versioned and traceable

• HL-LHC MBRD STEAM-LEDET model validated 

against experimental results

• Studied nominal and failure cases for the HL-LHC baseline case, and an alternative protection with double the 

QH units, which allows reducing the hot-spot temperature by 160 K and the peak voltage to ground by 44 % 

Conclusion and lessons learned

37
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Annex: Coil and block voltages

38

• Coil voltages show similar behaviour as 

differential voltage

• Underestimation before energy extraction triggering 

not yet understood

• Block voltages of coil 2A show good overall agreement 

for blocks in contact to quench heaters

• Outer blocks don’t quench but develop inductive voltage
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Block voltages 

3939

1

2
3

45

Coil 2A
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Voltage block 4 and 5

4040

1

2
3

45

Coil 2A

approximated quench start
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Annex: Improvements at low currents
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• Major improvement of simulated discharge

at low currents by including QH in the 

PyBBQ simulation

• No changes at high currents due to 

including QH in PyBBQ
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Annex: Variation of f_helium at low currents

42

• No impact on discharge current and differential voltage 

at low currents for high f_helium

• From certain f_helium quench propagation occurs



logo

area Validation – Co-simulation MBRD magnet

Annex: Variation of f_helium at high currents
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• No impact at low currents for high f_helium

• From certain f_helium quench propagation occurs

• Negligible impact on high currents
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Annex: Identifying value of f_helium
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• No impact at low currents for high f_helium

• From certain f_helium quench propagation occurs

• Negligible impact on high currents

• Highest visible impact at 6000 A

• Less helium cooling accelerates discharge

• Best fit for f_helium at 0.7
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Annex: Difference of simulated and measured quench start
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• Time of quench at high current is 

simulated well

• At low current, the quench start is 

simulated too early

• Earlier start maybe due to underestimating

the cooling along the longitudinal direction

of a half turn


