
A Tutorial on Differentiable 
Analysis & end-to-end learning

Nathan Simpson
PyHEP, 15/09/22



Two software libraries:

A suite of differentiable 
operations designed to target 
typical HEP use cases.

A method for optimizing 
observables in an end-to-end way, 
incorporating systematics

Also: a software package that 
implements helper functions for 
this use case

2

built with

https://github.com/gradhep/relaxed https://github.com/gradhep/neos

https://github.com/gradhep/relaxed
https://github.com/gradhep/neos


https://github.com/phinate/differenti
able-analysis-examples

3

https://github.com/phinate/differentiable-analysis-examples
https://github.com/phinate/differentiable-analysis-examples


Tangent:
how do neural networks learn at all?

4



data activation(weight*data + bias)

learnable free 
parameters

“architecture” 
(how you combine parameters w/ data)

“parameters” 

φ

5



data

φi

result

feedback?

6



data

φi

result objective(result)

(= scalar representing 
how good our result is)

want to 
minimise

7



data

φi

result objective(result)

(= scalar representing 
how good our result is)

minimisation

update rule?

8



data

φi

result objective(result)

(= scalar representing 
how good our result is)

φi+1 = φi - lr * d(workflow(data, φi))/dφi

= workflow(data, φi)

trying to roll downhill 
in param space!

po
sit

ive
gra

die
nt

ne
ga

tiv
e

ste
pupdate rule: gradient descent

step size
(“learning rate”)

gradient of workflow 
w.r.t. current parameters

9



We don’t need neural 
networks to do this!

(but they are often quite useful, so you’ll see some more later)

10



data

φi = {m,c}

result objective(result)

φi+1 = φi - lr * d(workflow(data, φi))/dφi

= workflow(data, φi)

still works!

as long as we can 
calculate this gradient!

y 
= 
mx
 +
 c

e.g. for 2D data: 
data on left of line = signal, 
on right = background

Same thing with a 
straight line:

11

Hard to say where “model” ends 
and “objective” begins.



Idea:
Using gradient descent, we can 

optimise any workflow parameters 
with respect to any goal… *if* the 

full workflow is differentiable.

12



A typical HEP analysis workflow

13



A typical HEP analysis workflow

More abstractly: step 
with free parameters 
(e.g. event selection)

14



A typical HEP analysis workflow

15



A typical HEP analysis workflow

16



A typical HEP analysis workflow

17



A typical HEP analysis workflow

18



A typical HEP analysis workflow

19



A typical HEP analysis workflow

20



(chain rule)

In equation form:

21

but wait, this is all code right?
how do we differentiate a computer program?



How might we get those 
gradients?

22

Automatic differentiation!

Quick explanation:
- Any program can be broken down into a series of 

primitive operations (+, -, /, *, log, exp…)
- These have known derivatives!
- Can then compose these derivatives via the 

product rule to get the gradient of the whole 
program!

→ exact, efficient gradients

Thanks to deep learning’s prominence, we 
have many great software libraries [JAX, 
PyTorch, TensorFlow] that take advantage of 
hardware acceleration (GPUs, TPUs)

Img source: AskPython.com

https://www.askpython.com/python-modules/tensorflow-vs-pytorch-vs-jax


So is that it? 
We code up our analysis in PyTorch and fit the model?

…not quite :)

Not all operations can be broken into differentiable 
primitives, because not all operations are 
differentiable!

Need to figure out a way to “relax” some operations 
to allow us to take their gradients.

Pictured: One very discrete boi.

23



already differentiable

Every step of the workflow needs to be 
differentiable!

not necessarily differentiable a priori

=> Let’s change that!

24



In one slide: Making analysis differentiable
Example: histograms [very discrete!]

*See Kyle Cranmer’s (heavily cited) paper on this: arxiv.org/abs/hep-ex/0011057

https://arxiv.org/abs/hep-ex/0011057


In one slide: Making analysis differentiable
Example: histograms [very discrete!]

We developed a histogram-alternative using kernel 
density estimates (KDEs). [used already in HEP!]*

Integrating the KDE over a set of intervals gives the 
notion of “bins”.  => Binned KDE (bKDE)

*See Kyle Cranmer’s (heavily cited) paper on this: arxiv.org/abs/hep-ex/0011057

https://arxiv.org/abs/hep-ex/0011057


In one slide: Making analysis differentiable
Example: histograms [very discrete!]

We developed a histogram-alternative using kernel 
density estimates (KDEs). [used already in HEP!]*

Integrating the KDE over a set of intervals gives the 
notion of “bins”.  => Binned KDE (bKDE)

Also have:

- differentiable cuts (sigmoid)
- differentiable likelihood-building through pyhf
- differentiable fitting due to exploiting the implicit 

function theorem

*See Kyle Cranmer’s (heavily cited) paper on this: arxiv.org/abs/hep-ex/0011057

https://arxiv.org/abs/hep-ex/0011057


28

Now time for 
some code!



What makes a good 
observable?
Searches for new physics endeavour to 
maximally discriminate simulated signal data 
from background processes.

But is this really what we want?

29

signal

background

e.g. neural network w/ 1-D output, trained to 
minimize binary cross-entropy



What makes a good 
observable?
Searches for new physics endeavour to 
maximally discriminate simulated signal data 
from background processes.

But is this really what we want?

e.g. what happens when we include 
systematic variations of the 
signal/background?

- Not guaranteed to produce a sensitive 
observable for all templates!

- Observable knows nothing about how 
we model + profile over the uncertainty!

30

?



“(...) sensitivity to high-level physics questions 
must account for systematic uncertainties, which 

involve a nonlinear trade-off between the 
typical machine learning performance metrics 

and the systematic uncertainty estimates. ”

Deep Learning and its applications to LHC Physics, section 3.1,
D.Guest, K.Cranmer, D.Whiteson, 2018 

arxiv.org/abs/1806.11484
(emphasis not in original text) 31

https://arxiv.org/abs/1806.11484


Can we learn to incorporate 
systematics?

32



Idea 2:
We can directly optimise the 

discovery significance/CLs of our 
analysis this way!

-> Systematic aware [profiling]

33



34

Oh baby it’s 
code time!



That’s it!
If you want to:

> discuss more about this in any way
> have an interesting use case
> talk about future opportunities
> send me pet images

please reach out! email: n.s@cern.ch
 I’d love to hear from you :)

and thanks for 
listening!

one of my cats, enjoying the 
homely comfort of the 
washing machine

35

This work was partially supported by the Insights ITN, funded by the European Union’s 
Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2017, under 
Grant Agreement n. 765710.

Work now supported by the Swedish Science Council and Lund University directly.

(until November)

http://europa.eu/
https://ec.europa.eu/programmes/horizon2020/en/
https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/calls/h2020-msca-itn-2017.html


Seeing it in 
practice

36

Taken from my tutorial repo: 
github.com/gradhep/differentiable-analysis-examples/

https://github.com/gradhep/differentiable-analysis-examples/


Toy example: 1-bin counting experiment

s = 15 + φ
b = 45 − 2φ

σb = 1 + (φ/5)²
Increasing 
s/b ratio

Increasing 
uncertainty on 
background

Increasing φ

37



Learning to discover: 1-bin example

We’re able to recover 
the optimal 
significance in our toy 
problem!

Intuitively, we’re trading 
off uncertainty and s/b 
ratio in order to give 
the best result.

38

for pdf viewers: optimisation with respect to significance is 
able to find the optimal significance accounting for 
uncertainty (minimum of blue curve)



Optimising a neural network observable (neos)

39

for pdf viewers: neural network contours wrap around the signal blob, 
but also balance the background variations to minimise uncertainty.



Optimising a neural network observable (neos)

40

neos gets better CLs than all 
other tried methods!

additional plots that show:
> cross-section uncertainty is also optimised for free
> no over/underconstraint of nuisance parameter



Optimising a neural network observable (neos)

41

More fun details and context 
in our preprint! :)

In collaboration with Lukas 
Heinrich:
arxiv.org/abs/2203.05570

code:

github.com/gradhep/neos

https://arxiv.org/abs/2203.05570
https://github.com/gradhep/neos
https://github.com/gradhep/neos


You can optimize anything!

42

https://github.com/gradhep/relaxed

binning!
cuts!

https://github.com/gradhep/relaxed
https://github.com/gradhep/relaxed


Backup

43



You want to know how it scales!
Me too!

IRIS-HEP is very interested in this, and plans to 
support it for the “Analysis grand challenge” on 
open data, but may need more personpower.

Very much open to collaboration on any use case!

example concerns:
 
> batch size may need to sufficiently 
represent analysis (so could require 
lots more VRAM compared to usual 
approach)

> every minibatch update = one run 
of the analysis, so may need lots 
more compute (but GPUs + autodiff 
are very powerful!)

44

https://iris-hep.org/


Discovery significance (it still works!)

45



Differences between discovery p-value and CLs

46

Train to optimize CLs Train to optimize discovery p-value



Differences between discovery p-value and CLs

47

Train to optimize CLs Train to optimize discovery p-value



Differences between discovery p-value and CLs

48

Train to optimize CLs Train to optimize discovery p-value



Which bandwidth to pick?

49


