
Lessons learned converting a
production-grade Python CMS

analysis to distributed
RDataFrame

Diego Ciangottini1, Enrico Guiraud3, Vincenzo Eduardo Padulano4, Daniele Spiga1,2, Tommaso
Tedeschi1,2, Enric Tejedor Saavedra3, Mirco Tracolli1

1 INFN Perugia, Italy
2 University of Perugia, Italy

3 CERN, Switzerland
4 Valencia Polytechnic University, Spain

PyHEP 2022 (virtual) workshop - September 13, 2022

Outline

● INFN analysis infrastructure objectives

● New distributed RDataFrame features

● A new INFN analysis facility prototype

● Performances

● Demo

● Conclusions

Thanks to other
contributors:

- Tommaso Boccali
- Massimo Biasotto
- Massimo Sgaravatto
- Stefano Nicotri
- Francesco Failla

2

The Objective

3

What are we talking about (in a nutshell)

An R&D project started at the end 2021 to study if /
how to improve resources usage for data analysis
and (more challenging) how to enable the
exploitation of new approaches, new paradigms for
analysing data at CMS. Looking at Phase2 but
targeting already Run3.

● Avoid wheels, do physics
○ Do not code event loops, but rather declare only

what you want to do in the end
● Let the framework optimize things

○ No configuration for data splitting or for explicit
multi-threading

○ Get the best throughput out of the infrastructure
● Share and reuse “code for humans”

○ Easier to debug
○ Harder to get lost

44

Fu
tu

re
 a

na
ly

si
s

to
ol

s

Ok CMS, measure the
Higgs boson mass in 2024

dataset

Run everywhere seamlessly
 from 1 to 1000+ cores

Get directly
the merged result

Credits to
A. Rizzi

User’s perspective

Fast turnaround : how to allow the user to
analyze billions on NanoAOD within N hours

- fast iteration time is essential for

debugging

experimental/theoretical/technical issues

and for developing/improving the analysis

- For O(billions) of events this means

event throughput in the MHz

Instead of..
- Submit O(1000) single core jobs to condor

batch system reading from mass storage,

writing O(200MB) of histograms to afs

- Resubmit the fraction of jobs which failed

the first time

- and the others which failed the second

time..

- Merge

5

What system do we need?

A system that grants access to computing resources for
analysis and enables a hybrid model: batch and interactive
patterns –> Not a one size fits all solution

Interactive - “Read this as: I can get a Jupyter notebook as big
as a Tier2”

- Transparently parallelize over a huge amount of cores allows
implementing the interactivity

- I’m writing Jupyter, you can read it as distributed python
- And more in general mitigate/avoid user waiting idle for grid

jobs

Batch like processing - “Read this as: I have a place where I
can submit (i.e condor_submit) my analysis jobs”

- Yes, “yet another batch”... completely dedicated to analysis

What analysis tool do we need?

A declarative, efficient, distributed analysis

tool: e.g. Distributed RDataFrame

The analysis tool

Distributed RDataFrame: what’s new

6

Distributed RDataFrame - a recap

● Launches an RDataFrame
application on a cluster

● Automatic splitting of the
workflow

● Takes care of running jobs and
merging results

● Can run with different
schedulers: Dask, Spark, …

● Analysis from start to end in a
single interface R

D
at

aF
ra

m
e

Co
m

pu
ta

ti
on

G
ra

ph

…
…

…

… CPU
…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

...

6.24

6.26

7

One API, Many Backends

from pyspark import SparkContext

df = RDataFrame('treename', 'filename.root',

 sparkcontext = SparkContext('spark://IP:PORT'))

from dask.distributed import Client

df = RDataFrame('treename', 'filename.root',

 daskclient = Client('tcp://hostname:port'))

HTC

SSH

K8s

Slurm

Dask

8

- Typical data pipelines go through a skimming step, before the final analysis

starts

- This in practice can lead to irregular datasets, where some files have no entries

at all

- A solid distributed engine must be able to deal with this situation gracefully

- In distributed RDataFrame, if a certain task has no entries to process it

automatically becomes a no-op

New: dealing with empty files in the pipeline

…
…

…

… CPU
…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

N entries.root

.root

.root

RDF

M entries

empty no-op

process

process

9

New: bringing support for more operations

More operations of the RDataFrame API are now supported in distributed mode too:

- HistoND
- DefinePerSample
- Redefine
- Vary + VariationsFor
- RunGraphs

As per usual, the application code doesn’t change at all

10

New: executing many distributed RDF graphs

Support for distributed RunGraphs means that it is possible to launch multiple RDF

computation graphs to the same (or potentially even different) cluster resources, in

parallel:

from dask.distributed import Client

df1 = RDataFrame('tree1', 'file1.root', daskclient = Client('tcp://hostname:port'))

df2 = RDataFrame('tree1', 'file1.root', daskclient = Client('tcp://hostname:port'))

df1 and df2 need to be processed with different operations

p1 = df1.Filter(...).Filter(...).Define(...).Histo1D()

p2 = df2.Define(...).Define(...).Define(...).Histo3D()

submit the graphs of p1, p2 concurrently

(they will run independently with different processes)

ROOT.RDF.Experimental.Distributed.RunGraphs([p1, p2])

11

New: distributed systematic variations

nominal_hx = df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", ["down", "up"])

 .Filter("pt > k")

 .Define("x", someFunc, ["pt"])

 .Histo1D("x")

hx = ROOT.RDF.Experimental.Distributed.VariationsFor(nominal_hx)

hx["nominal"].Draw()

hx["pt:down"].Draw("SAME")

Support for distributed systematic variations:

12

New: monitoring distributed RDF processes

For the purposes of this study, we
enabled monitoring in the distributed
processes

▶ Separate process pulls the
cpu/network/memory data from
the OS

▶ Take a new measurement every
second

▶ Metrics logs are processed after
the analysis

metrics

1 s

metrics

1 s

metrics

1 s

Logs

Logs

Logs

13

The infrastructure

14

The analysis facility

Three building blocks:

- JupyterHub (JHub) and JupyterLab (JLab) to
manage the user-facing part of the
infrastructure:

- This is not exclusive, also accessible
via standard UI (“a la batch”)

- DASK to introduce the scaling over a batch
system (HTCondor)

- XRootD as data access protocol toward AAA

We (CMS/INFN) have a distributed and
pledged resources topology

- Integrate everything, possibly even
opportunistic and “private” clusters

- With this configuration, “Grid vs Cloud vs
HPC is not anymore a user issue“: everything
is hidden behind a single Hub

A cluster/ a single fat node / a cluster of fat nodes… 15

The use case

16

Interactive via distRDF: first use case
A VBS SSWW analysis based on NanoAOD inputs (~plain ROOT

files) has been ported from legacy approach

(nanoAOD-tools/plain PyROOT-based) to distributed
RDataFrame in order to obtain:

● Enhanced user experience thanks to the declarative interface

● Improved efficiency thanks to intrinsic parallelization

● Optimized operations on data
○ obtained by merging analysis steps

● Distribution of workflows on different back-ends with ~0 changes in code

base

17

VBS SSWW with a light lepton and
an hadronic tau in final state on full
Run2 (NanoAOD)

Continuous collaboration/interaction between INFN and ROOT teams for the request/implementation/test
of new specific distributed RDataFrame features needed to streamline a full-scale physics analysis (see
next slides) to evaluate performance

Legacy → distRDF migration

18

Current implementation RDF implementation

Preskimming via CRAB (NanoAOD-Tools
postprocessor)

Postselection via HTCondor (plain PyROOT
script + some utils from NanoAOD-Tools)

Output files merging (PyROOT script
@lxplus)

Histogramming (PyROOT script @lxplus)

Fo
r

ea
ch

 s
ys

te
m

at
ic

 v
ar

ia
ti

on

Preskimming interactively via RDataFrame
on JupyterLab

Postselection and histogramming
interactively via RDataFrame on JupyterLab

(only one event loop for all variations)

Plotting (PyROOT script @lxplus) Plotting (PyROOT)

Merging step and
systematic variations

are done automatically

How the code looks like, in a nutshell

Main code schema used in both pre and post selection:

19

def inizialization_function():
 ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client) #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
 .Filter(“filtering_function(column_d)”, “A filter”)
 ...

book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

book an histogram -> used in postselection
lazy_histo = df_lazy_snapshot.Histo1D(“column_c”, “weights_column”)

to trigger execution
histo = lazy_histo.GetValue()

to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0 | -1 | -1 | -1 |
+-----+----------+----------+----------+

How the code looks like, in a nutshell

Main code schema used in both pre and post selection:

20

def inizialization_function():
 ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client) #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
 .Filter(“filtering_function(column_d)”, “A filter”)
 ...

book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

book an histogram -> used in postselection
lazy_histo = df_lazy_snapshot.Histo1D(“column_c”, “weights_column”)

to trigger execution
histo = lazy_histo.GetValue()

to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0 | -1 | -1 | -1 |
+-----+----------+----------+----------+

C++ functions that
manipulate RVec
objects
Target of the porting

How the code looks like, in a nutshell - with variations

Main code schema used in both pre and post selection:

21

def inizialization_function():
 ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client) #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
 .Filter(“filtering_function(column_d)”, “A filter”)
 ...

book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

book an histogram -> used in postselection
lazy_histo = df_lazy_snapshot.Histo1D(“column_c”, “weights_column”)

to trigger execution
histo = lazy_histo.GetValue()

to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0 | -1 | -1 | -1 |
+-----+----------+----------+----------+

df_processed = df.Vary("column_a", "...", "...”)\
 .Define(“column_c”, “function(column_a, column_b)”)\
 .Filter(“filtering_function(column_d)”, “A filter”)
 ...

lazy_histo_varied = ROOT.RDF.Experimental.Distributed.VariationsFor(lazy_histo)

distRDF monitoring

22

Task CPU usage percentage

Network bytes read per worker node

Task memory usage

Performance comparison

Taken as a benchmark the 2017 MC UltraLegacy (1 TB) analysis:

Overall speedup of O(10)

23

DEMO

https://github.com/comp-dev-cms-ita/pyHEP2022
_distRDF_INFN_AF

24

https://github.com/comp-dev-cms-ita/pyHEP2022_distRDF_INFN_AF
https://github.com/comp-dev-cms-ita/pyHEP2022_distRDF_INFN_AF

Conclusions

● Overall the transition from a “legacy” analysis code looks reasonably easy
○ At least for analyses based on NTuple-like data source

● The capability to scale seamlessly what I currently run locally is a great added value
○ Performance tests are also showing pretty good results

● Very advanced features that make analysis easy:
○ E.g. systematic variations

● Still to improve on distributed logging and debugging procedure
○ Sort of DASK/HTCondor native problem to be honest

○ occasional Dask task failure with no clear error pattern

○ Monitoring resources is crucial to understand possible bottleneck/errors

● Complete DNN inference with an external model possible via onnx files (and TMVA’s SOFIE):
○ Tf2onnx necessary if starting from Tensorflow Models

25

BACKUP

26

Dask-remote-jobqueue implementation

From the network perspective we came up with the following architecture deployed on the current testbed
This would allow us to respect the DASK cluster locality needs, while running code on remote JupyterLAB

Custom/derived parts

27

Dask-remote-jobqueue implementation

From the network perspective we came up with the following architecture deployed on the current testbed
This would allow us to respect the DASK cluster locality needs, while running code on remote JupyterLAB

Custom/derived parts

28

More importantly we are lowering
the bar of the requirements for
new resources to join!

Moreover this is allowing us to let the user select
which remote site to scale over!!

Pre-selection…. in a graph

Trigger
and
presele
ction
filters

Correct
ions
definesdf_data snapsh

ot

Trigger
and
presele
ction
filters

Correct
ions
and SF
defines

df_MC snapsh
ot

One for each era

All .root files are read
into the same
RDataFrame

Adding a sample flag
with
define_per_sample

29

Post-selection…. in a graph

30

All .root files are read into
the same RDataFrame

VBS
selec
tion

l+tau
selec
tion

Filter
ZZ

His
to1
D

His
to1
D

...df_afterpre_MC

ZZ histos

e+
tau

mu
+
tau

...

...

SR
selec
tion

Using a sample flagAll necessary
definitions

...

VBS
selec
tion

l+tau
selec
tion

df_afterpre_data

Fake
selectio
n

Data-driven
fake histos

His
to1
D

His
to1
D

...
e+
tau

mu
+
tau

...

His
to1
D

...

e+
tau

mu
+
tau

...
SR
selec
tion

...

Systematic variations

AuthN/Z: a “token native” system

We thought the system to be token based

● In other words: from IAM @CMS → JupyterHUB/HTCondor/DASK reverse proxy

Although a bit ahead of time, this comes with a significant benefit when we need to automatically
define what resources can access who in a dynamic/modern fashion

So far in HTCondor we are using the “good old” mapfile to match user IAM id with condor user. This is
in evolution though, possibly toward capability based access (in any case, no changes would be
needed to the infrastructure)

31

What can I do in there?

● Batch/Legacy
○ Run your analysis on a batch system with

resources collected over sites
○ Run your analysis on a batch system targeting

specifically HPC resources

● Quasi-interactive python scripting
○ On-demand leverage big-notebooks on big

machines (hpc node, dedicate hw) and run
locally with a portable and ready-to-use
environment

● Interactive python notebooks
○ Effortlessly scale local code with distributed

mode RDataFrame workflows over a T2 site or
over dedicated/specialized resources

○ Edit an reproduce plot interactively

32

