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The Objective
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What are we talking about (in a nutshell) 

An R&D project started at the end 2021 to study if / 
how to improve resources usage for data analysis 
and (more challenging) how to enable the 
exploitation of new approaches, new paradigms for 
analysing data at CMS. Looking at Phase2 but 
targeting already Run3.

● Avoid wheels, do physics
○ Do not code event loops, but rather declare only 

what you want to do in the end
● Let the framework optimize things

○ No configuration for data splitting or for explicit 
multi-threading

○ Get the best throughput out of the infrastructure
● Share and reuse “code for humans”

○ Easier to debug
○ Harder to get lost
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Ok CMS, measure the 
Higgs boson mass in 2024 

dataset

Run everywhere seamlessly
    from 1 to 1000+ cores 

Get directly 
the merged result

Credits to 
A. Rizzi



User’s perspective

Fast turnaround : how to allow the user to 
analyze billions on NanoAOD within N hours 

- fast iteration time is essential for 

debugging 

experimental/theoretical/technical issues 

and for developing/improving the analysis

- For O(billions) of events this means 

event throughput in the MHz

Instead of.. 
- Submit O(1000) single core jobs to condor 

batch system reading from mass storage, 

writing O(200MB) of histograms to afs

- Resubmit the  fraction of jobs which failed 

the first time 

- and the others which failed the second 

time..

- Merge 
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What system do we need?

A system that grants access to computing resources for 
analysis and enables a hybrid model: batch and interactive 
patterns –> Not a one size fits all solution 

Interactive - “Read this as: I can get a Jupyter notebook as big 
as a Tier2”

- Transparently parallelize over a huge amount of cores allows 
implementing the interactivity 

- I’m writing Jupyter, you can read it as distributed python
- And more in general mitigate/avoid user waiting idle for grid 

jobs  

Batch like processing - “Read this as: I have a place where I 
can submit ( i.e condor_submit ) my analysis jobs”

- Yes, “yet another batch”... completely dedicated to analysis 

What analysis tool do we need?

A declarative, efficient, distributed analysis 

tool: e.g. Distributed RDataFrame



The analysis tool

Distributed RDataFrame: what’s new
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Distributed RDataFrame - a recap

● Launches an RDataFrame 
application on a cluster

● Automatic splitting of the 
workflow

● Takes care of running jobs and 
merging results

● Can run with different 
schedulers: Dask, Spark, …

● Analysis from start to end in a 
single interface R
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One API, Many Backends

from pyspark import SparkContext

df = RDataFrame('treename', 'filename.root',

     sparkcontext = SparkContext('spark://IP:PORT'))

from dask.distributed import Client

df = RDataFrame('treename', 'filename.root',

     daskclient = Client('tcp://hostname:port'))

HTC

SSH

K8s

Slurm

Dask
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- Typical data pipelines go through a skimming step, before the final analysis 

starts

- This in practice can lead to irregular datasets, where some files have no entries 

at all

- A solid distributed engine must be able to deal with this situation gracefully

- In distributed RDataFrame, if a certain task has no entries to process it 

automatically becomes a no-op

New: dealing with empty files in the pipeline
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New: bringing support for more operations

More operations of the RDataFrame API are now supported in distributed mode too:

- HistoND
- DefinePerSample
- Redefine
- Vary + VariationsFor
- RunGraphs

As per usual, the application code doesn’t change at all
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New: executing many distributed RDF graphs

Support for distributed RunGraphs means that it is possible to launch multiple RDF 

computation graphs to the same (or potentially even different) cluster resources, in 

parallel:

from dask.distributed import Client

df1 = RDataFrame('tree1', 'file1.root', daskclient = Client('tcp://hostname:port'))

df2 = RDataFrame('tree1', 'file1.root', daskclient = Client('tcp://hostname:port'))

# df1 and df2 need to be processed with different operations

p1 = df1.Filter(...).Filter(...).Define(...).Histo1D()

p2 = df2.Define(...).Define(...).Define(...).Histo3D()

# submit the graphs of p1, p2 concurrently

# (they will run independently with different processes)

ROOT.RDF.Experimental.Distributed.RunGraphs([p1, p2])
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New: distributed systematic variations

nominal_hx = df.Vary("pt", "ROOT::RVecD{pt*0.9, pt*1.1}", ["down", "up"])

               .Filter("pt > k") 

               .Define("x", someFunc, ["pt"]) 

               .Histo1D("x") 

hx = ROOT.RDF.Experimental.Distributed.VariationsFor(nominal_hx) 

hx["nominal"].Draw() 

hx["pt:down"].Draw("SAME")

Support for distributed systematic variations:
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New: monitoring distributed RDF processes

For the purposes of this study, we 
enabled monitoring in the distributed 
processes

▶ Separate process pulls the 
cpu/network/memory data from 
the OS

▶ Take a new measurement every 
second

▶ Metrics logs are processed after 
the analysis
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The infrastructure
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The analysis facility

Three building blocks:

- JupyterHub (JHub) and JupyterLab (JLab) to 
manage the user-facing part of the 
infrastructure:

- This is not exclusive, also accessible 
via standard UI (“a la batch”)

- DASK to introduce the scaling over a batch 
system (HTCondor)

- XRootD as data access protocol toward AAA

We (CMS/INFN) have a distributed and 
pledged resources topology 

- Integrate everything, possibly even 
opportunistic and “private” clusters

- With this configuration, “Grid vs Cloud vs 
HPC is not anymore a user issue“: everything 
is hidden behind a single Hub

A cluster/ a single fat node / a cluster of fat nodes… 15



The use case
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Interactive via distRDF: first use case
A VBS SSWW analysis based on NanoAOD inputs (~plain ROOT 

files) has been ported from legacy approach 

(nanoAOD-tools/plain PyROOT-based) to distributed 
RDataFrame in order to obtain:

● Enhanced user experience thanks to the declarative interface

● Improved efficiency thanks to intrinsic parallelization

● Optimized operations on data
○ obtained by merging analysis steps

● Distribution of workflows on different back-ends with ~0 changes in code 

base
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VBS SSWW with a light lepton and 
an hadronic tau in final state on full 
Run2 (NanoAOD)

Continuous collaboration/interaction between INFN and ROOT teams for the request/implementation/test 
of new specific distributed RDataFrame features needed to streamline a full-scale physics analysis (see 
next slides) to evaluate performance



Legacy → distRDF migration
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Current implementation RDF implementation

Preskimming via CRAB (NanoAOD-Tools 
postprocessor)

Postselection via HTCondor (plain PyROOT 
script + some utils from NanoAOD-Tools)

Output files merging  (PyROOT script 
@lxplus)

Histogramming  (PyROOT script @lxplus)
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Preskimming interactively via RDataFrame 
on JupyterLab

Postselection and histogramming 
interactively via RDataFrame on JupyterLab 

(only one event loop for all variations)

Plotting  (PyROOT script @lxplus) Plotting  (PyROOT)

Merging step and 
systematic variations 

are done automatically



How the code looks like, in a nutshell

Main code schema used in both pre and post selection:
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def inizialization_function():
    ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client)  #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
                 .Filter(“filtering_function(column_d)”, “A filter”)
                 ...

# book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

# book an histogram -> used in postselection
lazy_histo = df_lazy_snapshot.Histo1D(“column_c”, “weights_column”)

# to trigger execution
histo = lazy_histo.GetValue()

# to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0   | -1       | -1       | -1       |
+-----+----------+----------+----------+           



How the code looks like, in a nutshell

Main code schema used in both pre and post selection:
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def inizialization_function():
    ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client)  #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
                 .Filter(“filtering_function(column_d)”, “A filter”)
                 ...

# book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

# book an histogram -> used in postselection
lazy_histo = df_lazy_snapshot.Histo1D(“column_c”, “weights_column”)

# to trigger execution
histo = lazy_histo.GetValue()

# to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0   | -1       | -1       | -1       |
+-----+----------+----------+----------+           

C++ functions that 
manipulate RVec 
objects
Target of the porting



How the code looks like, in a nutshell - with variations

Main code schema used in both pre and post selection:
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def inizialization_function():
    ROOT.gInterpreter.Declare(‘#include “utils_functions.h”’)

df = ROOT.RDF.Experimental.Distributed.Dask.RDataFrame(“Events”, chain, nPartitions = N, client = client)  #define the dataframe

df_processed = df.Define(“column_c”, “function(column_a, column_b)”)\
                 .Filter(“filtering_function(column_d)”, “A filter”)
                 ...

# book a snapshot (i.e. a saving)-> used in preselection
opts = ROOT.RDF.RSnapshotOptions()
opts.fLazy = True
df_lazy_snapshot = df_processed.Snapshot(“treeName”, “fileName.root”, opts)

# book an histogram -> used in postselection
lazy_histo = df_lazy_snapshot.Histo1D(“column_c”, “weights_column”)

# to trigger execution
histo = lazy_histo.GetValue()

# to inspect data
df_saved.Display([“column_a”, “column_b”, “column_c”], nRows = 1).Print()
+-----+----------+----------+----------+
| Row | column_a | column_b | column_c |
+-----+----------+----------+----------+
| 0   | -1       | -1       | -1       |
+-----+----------+----------+----------+           

df_processed = df.Vary("column_a", "...", "...”)\
                 .Define(“column_c”, “function(column_a, column_b)”)\
                 .Filter(“filtering_function(column_d)”, “A filter”)
                 ...

lazy_histo_varied = ROOT.RDF.Experimental.Distributed.VariationsFor(lazy_histo) 



distRDF monitoring
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Task CPU usage percentage

Network bytes read per worker node

Task memory usage



Performance comparison

Taken as a benchmark the 2017 MC UltraLegacy (1 TB) analysis:

Overall speedup of O(10)
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DEMO

https://github.com/comp-dev-cms-ita/pyHEP2022
_distRDF_INFN_AF 
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https://github.com/comp-dev-cms-ita/pyHEP2022_distRDF_INFN_AF
https://github.com/comp-dev-cms-ita/pyHEP2022_distRDF_INFN_AF


Conclusions

● Overall the transition from a “legacy” analysis code looks reasonably easy
○ At least for analyses based on NTuple-like data source

● The capability to scale seamlessly what I currently run locally is a great added value
○ Performance tests are also showing pretty good results

● Very advanced features that make analysis easy:
○ E.g. systematic variations 

● Still to improve on distributed logging and debugging procedure
○ Sort of DASK/HTCondor native problem to be honest

○ occasional Dask task failure with no clear error pattern

○ Monitoring resources is crucial to understand possible bottleneck/errors

● Complete DNN inference with an external model possible via onnx files (and TMVA’s SOFIE):
○ Tf2onnx necessary if starting from Tensorflow Models
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BACKUP
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Dask-remote-jobqueue implementation

From the network perspective we came up with the following architecture deployed on the current testbed
This would allow us to respect the DASK cluster locality needs, while running code on remote JupyterLAB

Custom/derived parts
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Dask-remote-jobqueue implementation

From the network perspective we came up with the following architecture deployed on the current testbed
This would allow us to respect the DASK cluster locality needs, while running code on remote JupyterLAB

Custom/derived parts
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More importantly we are lowering 
the bar of the requirements for 
new resources to join!

Moreover this is allowing us to let the user select 
which remote site to scale over!!



Pre-selection…. in a graph
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Post-selection…. in a graph
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All .root files are read into 
the same RDataFrame
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AuthN/Z: a “token native” system

We thought the system to be token based 

● In other words: from IAM @CMS → JupyterHUB/HTCondor/DASK reverse proxy

Although a bit ahead of time, this comes with a significant benefit when we need to automatically 
define what resources can access who in a dynamic/modern fashion

So far in HTCondor we are using the “good old” mapfile to match user IAM id with condor user. This is 
in evolution though, possibly toward capability based access (in any case, no changes would be 
needed to the infrastructure) 
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What can I do in there?

● Batch/Legacy
○ Run your analysis on a batch system with 

resources collected over sites
○ Run your analysis on a batch system targeting 

specifically HPC resources

● Quasi-interactive python scripting
○ On-demand leverage big-notebooks on big 

machines (hpc node, dedicate hw) and run 
locally with a portable and ready-to-use 
environment

● Interactive python notebooks
○ Effortlessly scale local code with distributed 

mode RDataFrame workflows over a T2 site or 
over dedicated/specialized resources

○ Edit an reproduce plot interactively
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