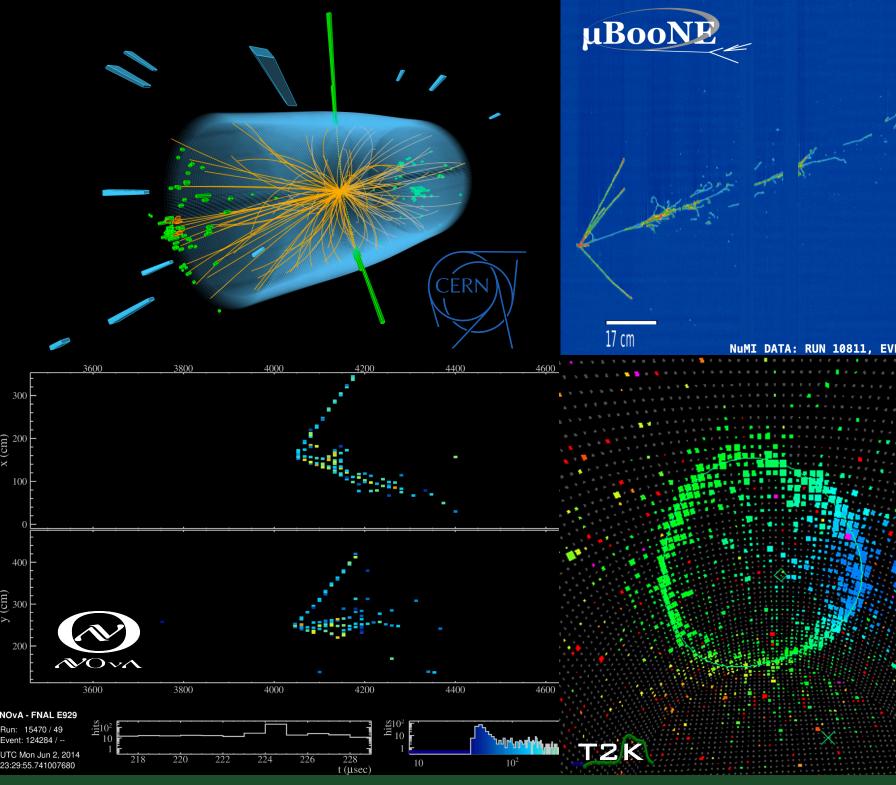
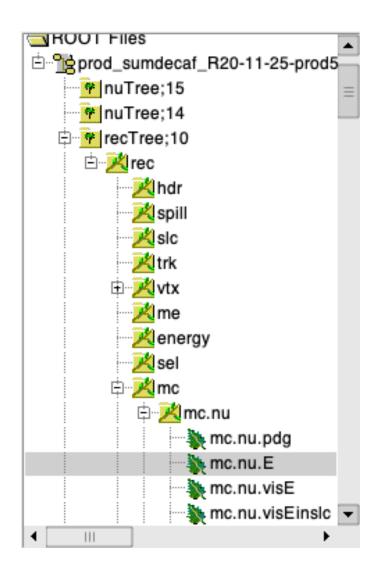
Implicitly Parallel Analysis Tools

<u>Derek Doyle</u>, Micah Groh, Jim Kowalkowski, Andrew Norman, Marc Paterno, Saba Sehrish PyHEP 2022

September 15, 2022

Fermilab




High Energy Physics Data

- High energy physics experiments collect massive amounts of data
 - Complicated event structure/ features
 - High intensity beams
- The first step of many analyses is often event selection and feature extraction
 - Highly-parallel task
 - Leverage high-speed interconnect and data storage at HPC facilities

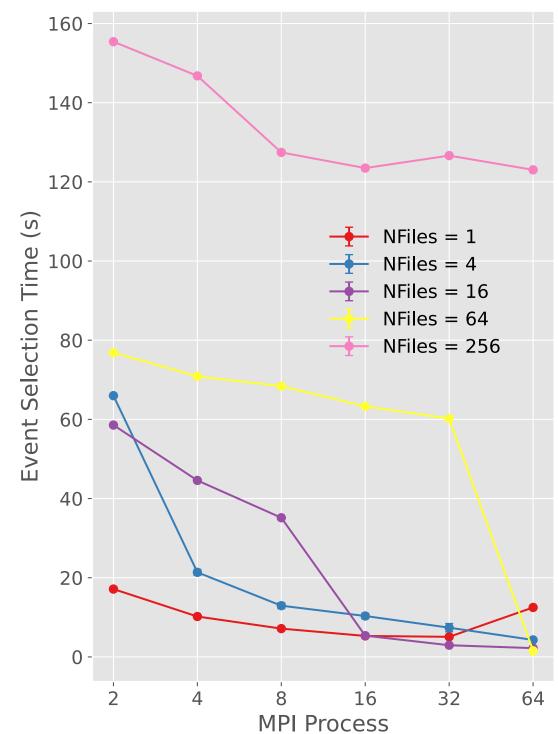
D. Doyle | Implicitly Parallel Analysis Tools

HDF5 Data Organization

Colorado State University

- HDF5 is the foundation of our Python analysis ecosystem
 - Can leverage highly optimized MPI implementations on HPC platforms
 - Large industry investment
- Data are store column-wise for efficiency columnar processing
- Flat tables, event indices associate features across tables
- From ROOT...
 - Nested tuples are flattened into separate groups (HDF5 Group)
 - Leaves compose the table's columns (HDF5 Dataset)

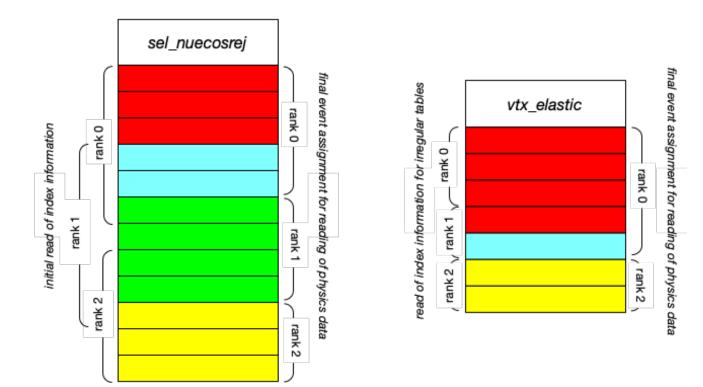
/rec.mc.nu (HDF5 Group)


Event Index	pdg	E	visE	visEinslc	
0	-14	1.6	0.89	0.79	
1	-14	2.3	0.92	0.91	
2	-14	2.07	1.26	1.23	
3	-14	2.00	1.04	0.98	

3

HDF5 Concatenation

https://github.com/NU-CUCIS/ph5concat


- HDF5 Chunking allows us to scale file size with little overhead
- Demonstrate scaling compression and improved event-selection time at various levels of concatenation of NOvA Monte Carlo dataset
- Monolithic dataset provides most flexibility
 - Consistent x10 speedup in event selection time
 - 11x compression
 - Self-contained
- Concatenated almost 3TB of uncompressed data using only 985 CPU hours (NERSC Cori)
 - $\mathcal{O}(10^2)$ GB file size enables laptop analyses

PandAna

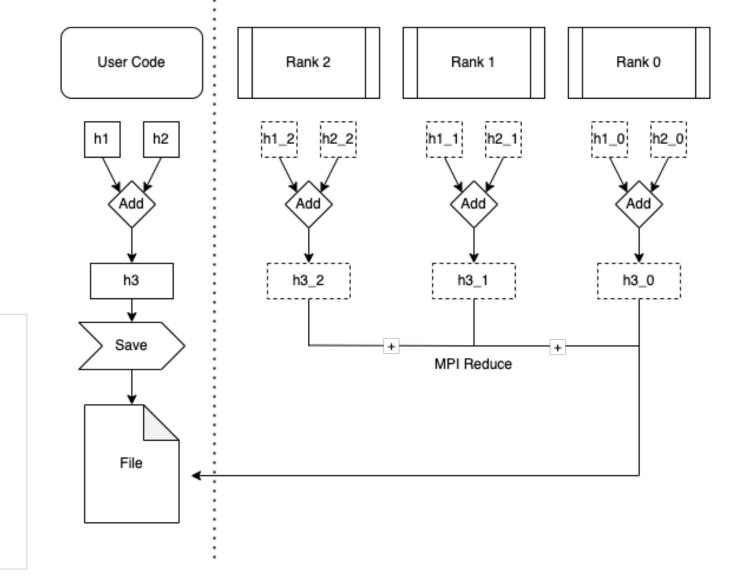
https://github.com/HEPonHPC/pandana

- PandAna is an implicitly parallel event selection
 framework
- Event indexing is used to distribute event selection workload among MPI ranks
 - Leverages parallel HDF5 I/O
 - Scalability limited by number of events
 - Handles irregular group sizes
- Easy to write, Pandas operations
- Possible improvements
 - Reduce event index redundancy requirements
 - Optimized data-flow using abstract syntax trees

User code for defining data-filtering operation (Cut)

@pandana.Cut

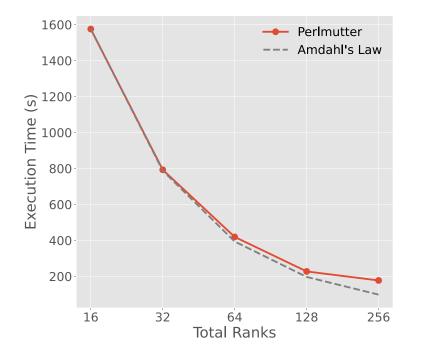
```
def kFiducialCut(tables: pandana.Table) -> pd.DataFrame:
    df = tables['rec.vtx.elastic'] # returns a DataFrame
    df = (df['vtx.x'] > -100) & \
        (df['vtx.x'] < 160) & \
        (df['vtx.y'] > -160) & \
        (df['vtx.y'] < 100) & \
        (df['vtx.z'] > 150) & \
        (df['vtx.z'] < 900)
    return df.groupby(level=['run', 'subrun', 'event']).first()
```


kNeutrinoEnergy = pandana.Var(lambda tables: tables['rec.mc.nu']['E'])

D. Doyle | Implicitly Parallel Analysis Tools

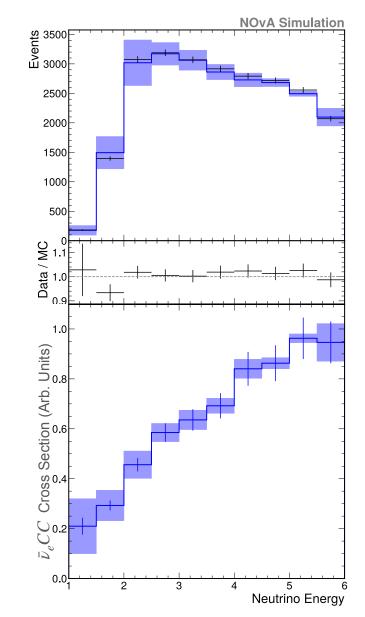
Llama — Llama does Lazy Mpi Aggregation

https://github.com/HEPonHPC/llama


- Implicitly parallel histogram package
- Wraps boost_histogram for performance and uncertainty accumulation
- Lazy aggregation of common histogram operations
- Implements the Unified Histogram Interface for plotting

Write to file
MPI Reductions happen behind the scenes
llama employs rank 0 to do all of the work while
supporting an API that can be called by "idle" ranks,
for pseudo-parallel IO with serial semantics!
with File(args.output_file, "w") as f:
 for name in loaders:
 group = f.create_group(name)
 selected events[name].saveto(group, "selected events")

D. Doyle | Implicitly Parallel Analysis Tools


Case Study: A Realistic Analysis

Beam Spills						
Datasets	(million)	Size (GB)				
Dataset 0	104	432				
Dataset 1	25	74				
Dataset 2	25	74				
Dataset 3	25	76				

We demonstrate **near-perfect scalability** of our implicitly-parallel analysis workflow on a realistic sample size

- NERSC's Perlmutter system
- $\bar{\nu}_e CC$ Inclusive cross-section measurement in the NOvA near detector
 - ~10,000 signal events
 - 12e20 Protons on Target (integrated luminosity) of data per Dataset
- Number of unique H5groups accessed = 16
- Number of unique H5datasets read = 54

Thank you

Derek Doyle	derek.doyle@colostate.edu
Micah Groh	. micah.groh@colostate.edu
Jim Kowalkowski	.jbk@fnal.gov
Andrew Norman	anorman@fnal.gov
Marc Paterno	paterno@fnal.gov
Saba Sehrish	ssehrish@fnal.gov

