A data-driven test of a quantum-statistics PDF parametrisation.

Federico Silvetti

INFN, Rome 1 unit

Sapienza University of Rome

QCD@LHC 2022

28 December 2022

with M. Bonvini, F. Buccella, F.Giuli and F. Tramontano

Istituto Nazionale di Fisica Nucleare Sezione di ROMA

Consider Deep Inelastic Scattering (DIS)

$$\sigma(x_{\rm Bj}, Q^2, \{P\}) = \sum_{i \in \{q, \overline{q}, g\}} \int_{x_{\rm Bj}}^1 \frac{\mathrm{d}x}{x} C_i\left(\frac{x_{\rm Bj}}{x}, \alpha_s, Q^2\right) f_i(x, Q^2, \{P\}) \quad (1)$$

To fit $f_i(\ldots)$ at all scales:

- 1. Parametrise f at some (low) initial scale $Q_0 \rightarrow f_i(x, Q_0^2, \{P\})$
- 2. Use DGLAP evolution from Q_0 to Q

$$f_i(x, \mathbf{Q_0^2}, \{P\}) \xrightarrow{\mathsf{DGLAP}} f_i(x, \mathbf{Q^2}, \{P\})$$

- 3. Take convolution with parton-level observable (1)
- 4. "Minimize" the difference $\sigma_{\exp}(x_{Bj}, Q^2) - \sigma(x_{Bj}, Q^2, \{P\})$ by varying the free parameters $\{P\}$

No analytical way to pick the initial parametrisation nor Q_0

• HERAPDF $\rightarrow f_i(x, Q_0^2) = x^{\alpha}(1-x)^{\beta} P_n(z)$ using polynomials [1506.06042]

• NNPDF
$$\rightarrow f_i(x, Q_0^2) = x^{\alpha}(1-x)^{\beta} NN(z)$$
 using neural networks [2109.02653]

• · · · many others

[2207.04739], [1912.10053]

An alternative to a generic parametrisation is using physical arguments to model the structures of the proton...

• Quarks(gluons) distributions behave according to Fermi(Bose) statistics

$$f_i(x, Q_0^2) \supset \left[\exp\left(\frac{x - X_{0i}}{\bar{x}}\right) \pm 1\right]^{-1};$$

- "Chemical potentials" of quarks and antiquarks are related $X_{0q}^{\uparrow\downarrow}=-X_{0\bar{q}}^{\downarrow\uparrow}$
- Gluons behave like blackbody radiation $\rightarrow X_{0g} = 0$
- \bullet Universal "temperature" parameter \bar{x}

LHC parton kinematics

We summarize the expressions from the model as

[hep-ph/0109160]

$$h(x; b, \bar{x}, X) = \frac{x^b}{\exp\left(\frac{x-X}{\bar{x}}\right) + 1},$$

$$xf_{q^{\uparrow\downarrow}}\left(x, Q_0^2\right) = AX_q^{\uparrow\downarrow}h\left(x; b, \bar{x}, X_q^{\uparrow\downarrow}\right) + \tilde{A}h\left(x; \tilde{b}, \bar{x}, 0\right),$$
 (2a)

$$xf_{\bar{q}\uparrow\downarrow}\left(x,Q_{0}^{2}\right) = \bar{A}\frac{1}{X_{q}^{\downarrow\uparrow}}h\left(x;\bar{b},\bar{x},-X_{q}^{\downarrow\uparrow}\right) + \tilde{A}h\left(x;\bar{b},\bar{x},0\right),$$
(2b)

with
$$q \in \{u, d\}$$
,
 $xf_g(x, Q_0^2) = \frac{A_g x^{b_g}}{\exp(x/\bar{x}) - 1}.$ (2c)

An auxilliary term $\tilde{A}h(x; \tilde{b}, \bar{x}, 0)$ is introduced to control the high-energy region. Fitting only unpolarised DIS data \rightarrow average over spin

$$f_q(x, Q_0^2) = f_{q^{\uparrow}}(x, Q_0^2) + f_{q^{\downarrow}}(x, Q_0^2)$$

Our QSPDF parametrisation (2)

Writing the unpolarised valence and sea contributions $(q \in \{u, d\})$

$$\begin{aligned} xq_v(x,Q_0^2) &= q(x,Q_0^2) - \bar{q}(x,Q_0^2) \\ &= A \Big[X_q^{\uparrow} h\Big(x;b,\bar{x},X_q^{\uparrow}\Big) + X_q^{\downarrow} h\Big(x;b,\bar{x},X_q^{\downarrow}\Big) \Big] \\ &- \bar{A} \Big[\frac{1}{X_q^{\downarrow}} h\Big(x;\bar{b},\bar{x},-X_q^{\downarrow}\Big) + \frac{1}{X_q^{\uparrow}} h\Big(x;\bar{b},\bar{x},-X_q^{\uparrow}\Big) \Big] \end{aligned} \tag{3a} \\ x\bar{q}(x,Q_0^2) &= \bar{A} \Big[\frac{1}{X_q^{\downarrow}} h\Big(x;\bar{b},\bar{x},-X_q^{\downarrow}\Big) + \frac{1}{X_q^{\uparrow}} h\Big(x;\bar{b},\bar{x},-X_q^{\uparrow}\Big) \Big] \\ &+ 2\tilde{A} h\Big(x;\tilde{b},\bar{x},0\Big) \,, \end{aligned} \tag{3b}$$

$$xg(x,Q_0^2) = \frac{A_g x^{b_g}}{\exp(x/\bar{x}) - 1}$$
 (3c)

$$s(x,Q_0^2) = \bar{s}(x;b,\bar{x},X,Q_0^2) = \frac{f_s}{1-f_s}\bar{d}(x;b,\bar{x},X,Q_0^2) \quad \text{with} \quad f_s = 0.4.$$
(3d)

 $\text{There are } 13 \text{ parametres: } \left\{ \bar{x}, A_g, A, \bar{A}, \tilde{A}, X_u^{\uparrow\downarrow}, X_d^{\uparrow\downarrow}, b, \bar{b}, b_g, \tilde{b} \right\} \\$

Additional constriants to apply:

• Valence and momentum sum rules \rightarrow fix normalisations $\{A_g, A, \bar{A}\}$

•
$$b_g = 1 + \tilde{b}$$
 (Regge theory)

•
$$\overline{b} = b$$

This leaves 8 free parameters to fit: $\left\{ \bar{x}, \tilde{A}, X_{u}^{\uparrow\downarrow}, X_{d}^{\uparrow\downarrow}, b, \tilde{b} \right\}$.

Fit setup and benchmark

We use xfitter public framework with the HERA DIS dataset

[1410.4412].

Some additional constraints are applied:

- Parametrisation scale $Q_0^2 = 4 \text{ GeV}$ $\rightarrow \text{ cut } Q^2 = 3.5 \text{ GeV} < Q_0^2$
- Theory inputs: <u>APFEL@NLO</u> VFNS (FONLL-B)

Benchmark fit between default HERAPDF2.0 NLO configuration in xfitter and our settings

We use xfitter public framework with the HERA DIS dataset

[1410.4412].

Some additional constraints are applied:	Dataset	HERAPDF20 Default- NLO)HERAPDF20 QSsetting
• Parametrisation scale $Q_0^2 = 4 \text{ GeV}$	HERA1+2 CCem HERA1+2 NCep 820	54 / 42 68 / 70	54 / 42 64 / 68
• Theory inputs: \rightarrow Cut $Q = 3.5 \text{ GeV} < Q_0$	HERA1+2 NCep 460 HERA1+2 NCep 920	217 / 204 439 / 377	216 / 200 397 / 363
APFEL@NLO VFNS (FONLL-B)	HERA1+2 CCep HERA1+2 NCem	43 / 39 222 / 159 210 / 254	45 / 39 221 / 159 217 / 240
 Improved description of NCep 920 	Correlated χ^2 Log penalty χ^2	219/254 86 +8.3	67 -4.68
NCCP 520	Total χ^2 / dof	1357 / 1131	1275 / 1106
	χ^2 p-value	0.00	0.00

Benchmark fit between default HERAPDF2.0 NLO configuration in <code>xfitter</code> and our settings

Now we fit QSPDF against the HERA DIS dataset.

- Reduced error bands
- Only experimental uncertainty is accounted for

Now we fit QSPDF against the HERA DIS dataset.

			•	•	
•	Fit	quai	ity	IS	gooa

very minimal set of parametres

Dataset	QSPDF	HERAPDF20 QSsetting
HERA1+2 CCep	59 / 39	45 / 39
HERA1+2 CCem	69 / 42	54 / 42
HERA1+2 NCem	229 / 159	221 / 159
HERA1+2 NCep 820	71 / 68	64 / 68
HERA1+2 NCep 920	468 / 363	397 / 363
HERA1+2 NCep 460	231 / 200	216 / 200
HERA1+2 NCep 575	235 / 249	217 / 249
Correlated χ^2	104	67
Log penalty χ^2	-71.03	-4.68
Total χ^2 / dof	1397 / 1112	1275 / 1106
χ^2 p-value	0.00	0.00

	QSPDF	HERAPDF2.0
# param.	8	14
$\chi^2/D.O.F.$	1.26	1.15

We recover:

- $X_u^{\uparrow} > X_d^{\downarrow} \sim X_u^{\downarrow} > X_d^{\uparrow}$ like in [hep-ph/0109160]
- Qualitative agreement a determination of parameters
- No information on polarised PDF (unlike previous work)

Parameter	QSPDF	[hep-ph/0109160]
A	3.04	1.75
\bar{A}	0.12	1.91
A_g	33.52	14.28
$ ilde{A}$	0.133 ± 0.004	0.083
X_d^{\uparrow}	0.14 ± 0.02	0.23
X_d^{\downarrow}	0.284 ± 0.007	0.302
X_u^{\uparrow}	0.419 ± 0.007	0.461
X_u^\downarrow	0.21 ± 0.02	0.298
$b = \overline{b}$	0.52 ± 0.01	0.41
$\tilde{b} = b_g - 1$	-0.173 ± 0.003	-0.253
\bar{x}	0.092 ± 0.001	0.099

Testing the QSPDF parametrisation: $\bar{d} - \bar{u}$ distribution

We compare the $\bar{d} - \bar{u}$ distributions explicitly \rightarrow Interesting qualitative feature reproduced!

Figure: Comparison of NNNPDF3.0 fits with the HERA dataset only and the default dataset, (NLO theory)

Figure: In blue the benchmark fit with the HERAPDF2.0 parametrisation and in red the fit of QSPDF

Fitting a statistical PDF model

- $\checkmark\,$ We performed a fit a custom PDF parametrisation (QSPDF) against the HERA DIS dataset.
- \uparrow Acceptable agreement between data and model.
- \uparrow Fit parameters match a previous attempts at fitting a similar parametrisation.
- This simplest iteration of the parametrisation isn't very competitive against more established models...
- \uparrow ... but uses a smaller number of degrees of freedom.
- $\uparrow\,$ Qualitative shape of the $ar{d}-ar{u}$ distribution reproduced with HERA data only.

Fitting a statistical PDF model

- $\checkmark\,$ We performed a fit a custom PDF parametrisation (QSPDF) against the HERA DIS dataset.
- [↑] Acceptable agreement between data and model.
- [↑] Fit parameters match a previous attempts at fitting a similar parametrisation.
- This simplest iteration of the parametrisation isn't very competitive against more established models...
- \uparrow ... but uses a smaller number of degrees of freedom.
- \uparrow Qualitative shape of the $ar{d} ar{u}$ distribution reproduced with HERA data only.

Outlook

- Improve the current fit.
- Modify the parametrisation (relaxing b
 , add transverse potentials) → building a
 "minimal" parameter set with state-of-the art performance.

Thank you for your attention

Backup slides

Our parametrisation

writing the unpolarised valence and sea contributions

$$xq_v^{\uparrow\downarrow}\left(x;b,\bar{x},X,Q_0^2\right) = x\left[f_{q\uparrow\downarrow}\left(x;b,\bar{x},X,Q_0^2\right) - f_{\bar{q}\uparrow\downarrow}\left(x;b,\bar{x},X,Q_0^2\right)\right],\qquad(4)$$

$$xq_{\mathsf{sea}}^{\uparrow\downarrow}\left(x;b,\bar{x},X,Q_{0}^{2}\right) = x\bar{q}^{\uparrow\downarrow}\left(x;b,\bar{x},X,Q_{0}^{2}\right) = xf_{\bar{q}^{\uparrow\downarrow}}\left(x;b,\bar{x},X,Q_{0}^{2}\right) \tag{5}$$

$$\begin{aligned} xq_{v}\left(x;b,\bar{x},X,Q_{0}^{2}\right) &= x\left[q_{v}^{\uparrow}\left(x;b,\bar{x},X,Q_{0}^{2}\right) + q_{v}^{\downarrow}\left(x;b,\bar{x},X,Q_{0}^{2}\right)\right] = \\ &= A\left[X_{q}^{\uparrow}f\left(x;b,X_{q}^{\uparrow}\right) + X_{q}^{\downarrow}f\left(x;b,X_{q}^{\downarrow}\right)\right] + \\ &- \bar{A}\left[\frac{1}{X_{q}^{\downarrow}}f\left(x;\bar{b},-X_{q}^{\downarrow}\right) + \frac{1}{X_{q}^{\uparrow}}f\left(x;\bar{b},-X_{q}^{\uparrow}\right)\right] \end{aligned}$$
(6a)

 $\begin{aligned} x\bar{q}\big(x;b,\bar{x},X,Q_0^2\big) &= \bar{q}^{\uparrow}(x) + \bar{q}^{\downarrow}(x) = \\ &= \bar{A}\bigg[\frac{1}{X_q^{\downarrow}}f\Big(x;\bar{b},-X_q^{\downarrow}\Big) + \frac{1}{X_q^{\uparrow}}f\Big(x;\bar{b},-X_q^{\uparrow}\Big)\bigg] + 2\tilde{A}h(x)\,, \quad \text{(6b)} \\ &xf_g(x) = \frac{A_g x^{b_g}}{\exp(x/\bar{x}) - 1}, \end{aligned}$

Figure: Effect of different constraint on \overline{b} : $\overline{b} = b$ and $= \overline{b} = 2b$

Federico Silvetti

Gluon PDF error in default HERAPDF2.0 fit @NLO

Figure: Large error in the gluon pdf induced by poor determination of $Agp = 0.23 \pm 0.29$.

Federico Silvetti