Open HF, quarkonia, Z/W in PbPb What's the status at QCD@LHC 2022

CMS Experiment at the LHC, CERN

The University of Kansas

Data recorded: 2016-Nov-18 05:51:16.422656 GMT

Run / Event / LS: 285480 / 49966555 / 240

Pressing questions and open items

What are the initial conditions of the collision?

Polarization of quarkonia in PbPb

- \square Polarization (λ_{θ}): degree to which **the spin is aligned** w.r.t. a chosen direction
- \square Evidence of $\lambda_{\theta} > 0$ (w.r.t the event plane) for **inclusive J/** ψ
- vanishing λ_{θ} at larger p_{T}
- significant effect up to semicentral events

arXiv: 2204.10171

Sensitive to huge magnetic field and properties of a rotating fluid

Nuclear PDFs: constraints scarce so far

☑ State-of-the-art nPDFs for perturbative QCD calculations

- $R_{\rm pA} = \frac{\text{p-Pb}}{\text{scaled} \otimes \text{pp}}$
- Strong constraints on bound nucleon modifications from dijets and W's
- NNLO nPDF analyses to include LHC data

In preparation of EIC, HIC @ LHC provides the best input to nPDFs

Nuclear PDF: constraints scarce so far

6

 W^{+}

- ☑ State-of-the-art nPDFs for perturbative QCD calculations
- Strong constraints on bound nucleon modifications from dijets and W's
 - also possibly from top quark pair production
- NNLO nPDF analyses to include LHC data

Probing the **unknown very high-x and Q²** region

Nuclear PDFs: constraints scarce so far

- ☑ State-of-the-art nPDFs for perturbative QCD calculations
- Strong constraints on gluon modifications from dijets and W bosons scaled pp
- NNLO nPDF analysis to include LHC data
- **2** Complementarity at very **low-x** with π^0 , η, **and D⁰ mesons**
- Bonus: saturation models and energy loss constraints

Probing the initial state with DY: another standard candle

- ☑ Drell-Yan (DY) inclusive & differential pPb measurement in extended 15< mμμ <120 GeV
- \bullet the most precise to date \rightarrow constraints on the quark nPDFs
- ☑ High-precision in PbPb too
- Deviation from flat centrality dependence described by HG-PYTHIA (like ALICE, tension with ATLAS)
- Possibility to determine NN luminosity with # of Z boson counts

Z boson production could even provide a **new normalization method!**

- \square First $\triangle v_2$ measurement for $D^0 \rightarrow$ sensitive to the strong created EM fields
- no EM induced charge-dependent splitting in v₂
- \square First high-precision $v_2\{4\}/v_2\{2\}$ also for $D^0 \rightarrow$ check whether fluctuations on v_2 are universal
- that's the case modulo very central (peripheral) events

Resolving v₂ event-by-event fluctuations with identified particle v₂{4}

What are the transport properties of the QGP?
How does QGP respond to hard probes?
What are the inner workings of QGP at various length scales?

Comparing heavy flavor particle flow in all systems

- ☑ There is charm anisotropy... everywhere
- ordering: v_2 (PbPb) $\geq v_2$ (pPb) $> v_2$ (pp)
- so **system size** should play a role?
- For open bottom hadrons: v_2 (PbPb) > 0 but v_2 (pPb) $\sim v_2$ (pp) ~ 0
- HF probes help to answer whether QGP is formed in high-multiplicity pPb/pp

Novel input to the description of heavy-quark transport and energy loss

v, and v, of charmonia in PbPb

- \blacksquare There is finite charm anisotropy... **up to high p** $_{\mathsf{T}} \rightarrow$ path length dependence
- v_2 of prompt $\psi(2S)$ larger than prompt $J/\psi v_2$ up to high p_T
- so different levels of **recombination** for J/ψ and $\psi(2S)$?
- ☑ The measured v₃ consistent with zero
- not (yet?) sensitive to event-by-event fluctuations

Azimuthal anisotropy for **prompt** $\psi(2S)$ mesons is reported for the first time

Azimuthal correlations of muon pairs from HF decays

- Can shed light on the HF energy-loss mechanism(s)
- opposite- vs same-sign muons: (in principle) ccbar vs bbar
- ☑ Observables: HF yield and width of away-side correlation
- yield suppression toward central collisions.
- width quite independent of centrality and consistent with pp

ATLAS-CONF-2022-022

- Constraining the spatial diffusion coefficient via data-to-model comparisons
- different transport models for energy loss and hadronization (T > T_c)
- \bullet simultaneous description of R_{AA} and v₂ \rightarrow 1.5 < $2\pi D_s T_c$ < 4.5 (best limits at LHC)
- ☑ Measurement of R_{AA} and v₂ for charm and bottom
- ullet mass splitting at low p_T but converge at high p_T ($\gg m_b$)
- D_s in R_{AA} &v₂ calculation in line with the extraction from D⁰

Resolving the p_T and v_2 puzzle of D^0

- \square Challenging to understand the R_{pPb} and v₂ of D⁰
- •models describe the HF R_{pPb} but can't v_2 (POWLANG) or can predict only the v_2 (GCC)
- ☑ Recently a **simultaneous description** was provided in a modified AMPT version, key findings:
- parton interactions+Cronin effect important for R_{pPb} while
- parton interactions are mostly responsible for the v₂

Cronin effect could also be important for HF in large systems

Heavy quarkonia suppression

- Observation of the sequential melting of Υ(ns) in PbPb and pPb
- first time including Y(3S) in the picture

 $R_{AA}(Y(1S))>R_{AA}(Y(2S))>R_{AA}(Y(3S))$

CMS-PAS-HIN-21-007

Interplay of suppression-regeneration crucial to grasp data

Heavy quarkonia suppression

17

- Observation of the sequential melting of Υ(ns) in PbPb and pPb
- first time including Y(3S) in the picture
- Similarly to the hierarchy suppression between J/ψ and ψ(2S)
- decreasing R_{AA} vs p_T connected with charm quark regeneration

J/ψ production at midrapidity

- \square The first measurement of prompt and nonprompt J/ ψ at midrapidity in pPb 8.16 TeV
- thanks to the usage of electron triggers in TRD
- Theoretical models describing the forward, backward y results, also agree at midrapidity
- \bullet R_{pPb} vs p_T consistent with unity \rightarrow CNM effects modest in the studied kinematic range

arXiv: 2211.14153

B and **B** production PbPb

- **☑** For B_s⁰ **low-pT enhancement** suggested by models
- current uncertainty large though
- **☑** First observation of B_c⁺
- unique state for enhancement (**low** p_T) and suppression (**high** p_T)

Binding energy hierarchy

Y(1S) 1.1 GeV

0.87 GeV

arXiv: 2109.01908

arXiv:2201.02659

What's the hadronization mechanism with QGP?

Charmed baryon-to-meson ratio in all systems

- New measurements of Λ_c^+/D^0 down to $\mathbf{p_T} = \mathbf{0}$ and central PbPb
- \bullet difference wrt to pp \rightarrow radial flow or multiplicity dependence of hadronization?
- challenging further the universality of hadronization process
- So far significant differences in mid vs forward y
- a systematic discrepancy in y confirmed
- motivate improvements in model predictions in different phase-space regions

Production of exotic hadrons in HIC

 $\overline{\mathbf{a}}$ Exotic states test models in an expanded range of n_{cq}

D⁰D * Molecule

D
D
T
T
Sity

Compact tetraquark

effects are sensitive to size/binding energy of bound state and QGP density

VERY small binding energy VERY large radius, ~5-10 fm Tightly bound via color exchange between diquarks Small radius, ~1 fm

- $\chi_{c1}(3872)/\psi(2S)$: something different for exotic vs conventional hadrons?
- initial-state effects cancel in the ratio
- enhancing effects start to outcompete breakup (at least at low p_T)

Machine learning techniques increases sensitivity to rare probes

Summary

- ☑ LHC nuclear data are a game changer
- precise extractions of nPDFs crucial for modeling the initial state needed to characterize the QGP
- Comprehensive studies of heavy flavor collectivity in all systems
- significant charm v₂, bottom flows (?) in PbPb
- \bullet complementary measurements from $\Delta \phi$ correlations of HF decayed leptons
- \blacksquare Explore $V_2 \& R_{AA,pA}$ at the same time
- \bullet consistently extract D_s, understand p_T broadening, and parton interactions
- A rich program on quarkonia suppression
- \bullet J/ ψ in extended regions, $\psi(2S)$, Y(ns), B_s^0 , B_c^+
- ☑ Future data with improved precision will provide **crucial insights**
- for example Λ_c^+/D^0 , exotic mesons, all above

Key features of heavy flavor measurements

- ☑ Variety of meson/baryon states with different flavors in a broad kinematic range
- techniques to separate heavy from light flavor decays
- We gain insight on
- whether heavy quarks flow with the bulk
- parton interactions in the QGP (thermalization, energy loss,...)
- QGP properties (transport coeff)
- pQCD predictions, parton shower modeling, hadronization mechanisms

HL-LHC operational scenarios for pPb and PbPb

- Included in the YR and more recently refined (CERN-ACC-2020-0011, EPJ.Plus 136 (2021) 7)
- scenarios are based on benchmarked models (agree remarkably well with Run 2 LHC data)
- ≈five one-month runs would be needed to reach 13 /nb of PbPb
- projections could be improved, e.g., due to operational efficiency (>50%), etc

Collectivity in small systems?

- ☑ Detailed flow measurements in **pp/pPb** indicate that
- \bullet centrality/event activity and p_T dependence qualitatively **similar** to that in AA
- ullet identified particle and multiparticle correlation techniques support a **collective origin** of $\mathbf{v_n}$
- encompassed by hydrodynamical models, but not a unique description
- \square We start answering whether a collective component in \mathbf{v}_n exists by studying
- the role of the **initial conditions**
- the impact of hard-scattering processes and energy loss
- alternative systems, e.g., ultraperiphal collisions (UPC)

Investigating the initial stages with more elaborate observables

- **Subtle** differences in v_2 {2k}(k≤5) ② fluctuation-driven **moments** of v_2
- measured v2{10} measured for the first time!
- constraints on hydro predictions
- \blacksquare High-precision for **sign changes** when correlating $v_n\{2k\}$ with $[p_T]$
- very sensitive to gluon correlations (CGC): not seen in data

 \square small η gap

• large η gap

Reduction of non-flow effects

†IP-Glasma+MUSIC+UrQMD

: Sign change predicted by CGC

P(x)

Resolving v₂ event-by-event fluctuations with unprecedent precision

Key characteristics of the nPDF global fits

	KSASG20	nCTEQ15WZSIH	TUJU21	EPPS21	nNNPDF3.0
Order in a		-			
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO
lA NC DIS	√	√	√	√	√
uA CC DIS	✓		✓	✓	√
pA DY	✓	✓		✓	✓
π A DY				✓	
RHIC dAu π^0, π^\pm		✓		✓	
LHC pPb $\pi^0, \pi^{\pm}, K^{\pm}$		✓			
LHC pPb dijets				✓	✓
LHC pPb D ⁰				✓	√ reweight
LHC pPb W,Z		√	✓	/	/
LHC pPb γ		,	•	·	,
Life pi b /					·
Q,W cut in DIS	1.3, 0.0 GeV	2.0, 3.5 GeV	1.87, 3.5 GeV	1.3, 1.8 GeV	1.87, 3.5 GeV
$p_{ m T}$ cut in D 0 , h -prod.	N/A	3.0 GeV	N/A	3.0 GeV	0.0 GeV
Data points	4353	948	2410	2077	2188
Free parameters	9	19	16	24	256
Error analysis	Hessian	Hessian	Hessian	Hessian	Monte Carlo
Free-proton PDFs	CT18	∼CTEQ6M	own fit	CT18A	~NNPDF4.0
Free-proton corr.	no	no	no	yes	yes
HQ treatment	FONLL	S-ACOT	FONLL	S-ACOT	FONLL
Indep. flavours	3	5	4	6	6
'					
Reference	PRD 104, 034010	PRD 104, 094005	arXiv:2112.11904	arXiv:2112.12462	arXiv:2201.12363

Key characteristics of the nPDF global fits

With input from Annu. Rev. Nucl. Part. Sci. 70 (2020)

Nuclear (most recent) PDFs	nCTEQ15	EPPS16	nNNPDF 2 .0 (1 .0)	TUJU19
Perturbative order	NLO	NLO	NLO, NNLO	NLO, NNLO
Heavy quark scheme	ACOT	S-ACOT	FONLL	ZM- VFN
Value of $\alpha_s(m_Z)$	0.118	0.118	0.118	0.118
Input scale Q_0	$1.30~{ m GeV}$	$1.30 \mathrm{GeV}$	$1.00~{\rm GeV}$	$1.69~{ m GeV}$
Data points	708	1811	1467 (451)	2336
Fixed Target DIS	\checkmark	\checkmark	$\sqrt{(\text{w/o }\nu\text{-DIS})}$	\checkmark
Fixed Target DY	\checkmark	\checkmark		
LHC DY and W		\checkmark	√ (X)	
Jet and had. prod.	$(\pi^0 \text{ only})$	$(\pi^0, LHC dijet)$		
Independent PDFs	6	6	3	6
Parametrisation	simple pol.	simple pol.	neural network	simple pol.
Free parameters	16	20	256 (178)	16
Statistical treatment	Hessian	Hessian	Monte Carlo	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 52$	_	$\Delta \chi^2 = 50$

- nPDFs from several groups but
- less available data sets compared to the free-nucleon cases
- different data sets (e.g., pPb LHC data), theoretical assumptions, and methodological settings
- not well understood aspects for bound nucleons, e.g.,
 - the nuclear modifications of the gluon distribution
 - Measurements at small-x test non-linear QCD evolution at small-x ("parton saturation")

Nuclear gluon PDFs: constraints scarce so far

- Stringent constraints with dijet production
- Enhanced suppression at forward y
- ☑ Significant reduction in EPPS16 uncertainties after reweighting already with Run 2 data (left plot)
- Improved constraints with HL-LHC data (right plot)
- Complementarity with W bosons and top quarks, and exclusive vector meson photoproduction

HF transport models: ingredients

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	✓	×	V	▼	~
LIDO	$\overline{\checkmark}$	✓	▽	V	✓
PHSD	$\overline{\checkmark}$	×	▽	V	✓
DAB-MOD	$\overline{\checkmark}$	$\overline{\checkmark}$	▽	V	×
Catania	$\overline{\checkmark}$	×	▽	V	~
MC@sHQ+EPOS	$\overline{\checkmark}$	$\overline{\checkmark}$	▽	V	~
LBT	$\overline{\checkmark}$	$\overline{\checkmark}$	▽	V	✓
POWLANG+HTL	$\overline{\checkmark}$	X	▽	V	✓
LGR	$\overline{\mathbf{V}}$	V	▽	~	~

But more importantly: different **implementations** and **input parameters**.

Uncertainties in B_s in PbPb

arXiv: 2109.01908

Table 2: Summary of systematic uncertainties in the $T_{\rm AA}$ -scaled yield measurements for B⁺ and B_s⁰ mesons, in three centrality ranges. The measurements are performed in the B meson kinematic region given by $10 < p_{\rm T} < 50\,{\rm GeV}/c$ and |y| < 2.4. The relative uncertainty values are shown in percentage.

	B^{+}			$\mathrm{B_{s}^{0}}$		
Centrality class	0-30%	30-90%	0-90%	0–30%	30-90%	0-90%
M	+4.2	+4.1	+4.2	+5.5	+4.6	+5.3
Muon efficiency	-3.8	-3.8	-3.8	-4.9	-4.2	-4.7
Data/MC agreement	13	8.0	12	3.1	3.7	3.2
MC sample size	3.2	2.2	2.4	6.6	2.3	4.4
Fit modeling	2.5	2.8	2.6	2.5	3.2	2.3
Tracking efficiency	5.0	5.0	5.0	10	10	10
T_{AA}	2.0	3.6	2.2	2.0	3.6	2.2
$N_{ m MB}$		1.3			1.3	
Branching fraction		2.9			7.5	
Total	+16	+12	+15	+16	+15	+15
Total	-15	-12	-15	-16	-15	-15

Measuring jet quenching

- Energy of partons is redistributed ('quenched') inside QGP
- Experimentally seen as R_{AA} modifications of hadrons or jets
- dependent on centrality, p_T parton mass
- Unprecedented access from low- to high-p_T

PLB 790 (2019) 108

PRL 123 (2019) 022001

Evidence of tt cross section in PbPb

- **Tirst** experimental evidence (4σ level) of the top quark in **nucleus-nucleus** collisions
- using leptons only and leptons+b jets
- It establishes a new tool for probing nPDFs as well as the QGP properties

Phys. Rev. Lett. **125** (2020) 222001

D

A nice heuristic idea for a yocto-chronometer!

Knowing the energy loss, it is possible to build the density evolution profile of the medium!