Bottomonium Production in Heavy Ion Collisions from Coupled Boltzmann Equations

Xiaojun Yao

University of Washington

Collaborators: Berndt Müller, Steffen A. Bass, Weiyao Ke, Yingru Xu arXiv: 2004.06746

> QCD@LHC 2022 IJCLab Orsay, France Nov. 28, 2022

Quarkonium as Probe of Quark-Gluon Plasma

- Heavy quarkonium as probe of QGP:
 - Static screening: suppression of color attraction —> melting at high T, states of different sizes have different melting T —> thermometer

 Dissociation: induced by in-medium scattering, can happen even below melting T

- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T, crucial for charmonium phenomenology and theory consistency
- Cold nuclear matter effect, feed-down contributions

- What are coupled Boltzmann equations?
- Why do we use them?
- How do they work compared with experimental data?

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; +: recombination; -: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C_{Q\bar{Q}}^+ + C_{Q\bar{Q}}^-$ Each quarkonium state, nl = 1S, 2S,1P etc.

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; +: recombination; -: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C^+_{Q\bar{Q}} + C^-_{Q\bar{Q}}$ Each quarkonium state, nl = 1S, 2S,1P etc.

 $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ Correlated recombination $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = \mathcal{C}_{nls}^{+} - \mathcal{C}_{nls}^{-} - \mathcal$

Uncorrelated recombination

Correlated v.s. Uncorrelated Recombination

- Correlated recombination: heavy quark pair from same initial hard vertex / dissociation
- Uncorrelated recombination: heavy quark pair from different initial hard vertices; crucial contribution to charmonium production; important for charmonium but negligible for bottomonium
- Recombination in most transport calculations: uncorrelated

How to incorporate correlated recombination in semiclassical transport? Need 2-particle distribution

XY T. Mehen, 2009.02408, 2102.01736

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; +: recombination; -: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C_{Q\bar{Q}}^+ + C_{Q\bar{Q}}^-$ Each quarkonium state, nl = 1S, 2S,1P etc. $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_x) f_{nls}(x, p, t) = C_{nls}^+ - C_{nls}^$ $f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) \neq f_Q(x_Q, p_Q, t) f_{\bar{Q}}(x_{\bar{Q}}, p_{\bar{Q}}, t)$

Can handle both correlated and uncorrelated recombination

 $C_{Q\bar{Q}} = C_Q + C_{\bar{Q}}$ Each independently interact with medium: (1) Potential between pair screened (2) Potential depends on color, average over

We use "Lido" for open heavy flavor transport: diffusion + radiation

W.Ke, Y.Xu, S.A.Bass, PRC 98, 064901 (2018)

Compare w/ LHC Data on Upsilon at 5.02 TeV

Coulomb potential -> no bottomonium mass change at finite T (lattice evidence) Initial conditions: momentum: Pythia + nPDF EPPS16; position: Trento, binary collision 2+1D viscous hydro calibrated; HQ dynamics calibrated Bottomonium: 1S, 2S, 3S, 1P, 2P; no recombination for 3S, 2P Feed-down networks

1.0

0.8

0.4

0.2

0.0-

 $\left(\right)$

RAA RAA

e.g. no $2S \rightarrow 1S$, $1S \rightarrow 1P$ etc

with cross-talk (correlated) recombination

without cross-talk recombination

Uncertainty of nPDF and nPDF at RHIC Energy

Double Ratio and Flow Observables

Experimental Test of Correlated Recombination

Traditional sequential suppression argument based on hierarchy of binding energy or size $-> R_{AA}(2S) \sim R_{AA}(1P)$, since their binding energies are close

Correlated recombination rates (2S—>unbound—>1P) ~ (1P—>unbound—>2S) because of similar binding energy, but primordial production cross section

$$\frac{\sigma_{1P}}{\sigma_{2S}} \sim 4.5$$

Conclusion

- Coupled Boltzmann equations for open and hidden heavy flavors: correlated recombination (the Boltzmann equation for quarkonium is derived from open quantum system, see the review 2102.01736)
- Bottomonium phenomenology, importance of correlated recombination
- CNM uncertainty dominates, cancel out largely in double ratio observables, update by using EPPS21
- Experimental test: measure R_{AA} (1P), compare with R_{AA} (2S)
- Future consideration: include 3S recombination, charmonium