

# Measurement of multijet production

Zdenek Hubacek On behalf of CMS and ATLAS collaborations

QCD@LHC, Orsay, 2022









Run: 300687 Event: 1358542809 2016-06-02 18:19:05 CEST

#### Motivation

- Multijet measurements test various aspects of QCD
- Test of pQCD calculations (LO/NLO/NNLO)
- Parton shower modelling
- Determine QCD fundamental parameters

CMS, CMS-PAS-SMP-21-009

### Inclusive jet cross section at hadron colliders

 $\frac{d^2\sigma}{dp_T d|y|} = \frac{N_{\text{jets}}}{\epsilon \mathcal{L} \Delta p_T \Delta |y|}$ 

- "Standard candle measurement" measured at 2.76,5.02,7,8,13 TeV @LHC
- NNLO state of the art now





- Measure N-jet properties directly or indirectly
- At LO, 2 jets are produced backto-back in the azimuthal angle



- Measure N-jet properties directly or indirectly
- At LO, 2 jets are produced backto-back in the azimuthal angle
- Any additional radiation will cause the decorrelation



- Measure N-jet properties directly or indirectly
- At LO, 2 jets are produced backto-back in the azimuthal angle
- Any additional radiation will cause the decorrelation
- $3^{rd}$  jet production (2 $\rightarrow$ 3 process) restricts the phase space to  $\Delta \phi > 2\pi/3$



- Jet multiplicity and p<sub>T</sub> in multijet events (CMS, Submitted to EPJC)
- Double parton scattering in 4 jet events (CMS, JHEP 01(2022) 177)
- Multijet event shapes (ATLAS, JHEP 01(2021) 188)
- Multijet event isotropies (ATLAS, ATLAS-CONF-2022-056)
- Extraction of α<sub>s</sub> in transverse energy-energy correlations (ATLAS, ATLAS-CONF-2020-025)



NEW, CMS Submitted to EPJC

#### Jet multiplicity measurement

- Multiplicity of  $p_T > 50$  GeV jets measured in high  $p_T$  dijet events
- Also as a function of the azimuthal angle between the leading dijet
- Compared to LO/NLO ME predictions and also to NLO TMDs predictions

| Generator         | PDF                    | ME                         | Tune           |
|-------------------|------------------------|----------------------------|----------------|
| PYTHIA8 [23]      | NNPDF 2.3 (LO) [25]    | $LO 2 \rightarrow 2$       | CUETP8M1 [24]  |
| MadGraph+Py8 [4]  | NNPDF 2.3 (LO) [25]    | LO 2 $\rightarrow$ 2, 3, 4 | CUETP8M1 [24]  |
| MADGRAPH+CA3 [4]  | PB-TMD set 2 (NLO) [1] | LO 2 $\rightarrow$ 2, 3, 4 |                |
| HERWIG++ [26]     | CTEQ6L1 (LO) [27]      | LO $2 \rightarrow 2$       | CUETHppS1 [24] |
| MG5_aMC+Py8 (jj)  | NNPDF 3.0 (NLO) [31]   | NLO 2 $\rightarrow$ 2      | CUETP8M1 [24]  |
| MG5_aMC+CA3 (jj)  | PB-TMD set 2 (NLO) [1] | NLO 2 $\rightarrow$ 2      | _              |
| MG5_aMC+CA3 (jjj) | PB-TMD set 2 (NLO) [1] | NLO $2 \rightarrow 3$      | —              |



# Jet $p_T$ distributions in multijet events

- Both jet multiplicity and p<sub>T</sub> distributions not well described by LO generators
- NLO calculations describe multiplicities and p<sub>T</sub> spectra reasonably well
- PB-TMD together with NLO used for the first time



CMS, JHEP 01 (2022) 177

#### Double parton scattering in 4 jet events





6 observables  $(\Delta \phi_{\text{Soft}} = \Delta \phi_{34}, \Delta p_{T34} \text{ for }$ example) senstive to a difference between SPS and DPS

 $\sigma_{A,B}^{DPS} =$ 

Template method to extract DPS  $\sigma$  and  $\sigma_{eff}$ 



#### DPS effective cross section





#### Event shapes

- Family of observables which characterize the event topology and/or energy flow in collider events
- Thrust, thrust minor, sphericity, aplanarity

QCD@LHC2022, Orsay, France

• Energy-energy correlations, event isotropies

Example: Transverse thrust – thrust axis  $n_{\perp}$  to which the projections of  $p_{T}$  are maximised,  $0 \le \tau_{\perp} < 1 - 2/\pi$ 

$$T_{\perp} = \max_{\hat{\boldsymbol{n}}_{\perp}} \frac{\sum_{i} |\boldsymbol{p}_{\mathrm{T}i} \cdot \hat{\boldsymbol{n}}_{\perp}|}{\sum_{i} p_{\mathrm{T}i}} \qquad \tau_{\perp} = 1 - T_{\perp}$$

#### Transverse energy energy correlations

- Transverse energy-weighted distribution of azimuthal differences between jet pairs
- RGE predicts running of  $\alpha_s$  deviation could be also a sign of new coloured fermions
- Also testing parton shower models





ATLAS, JHEP 01 (2021), 188



- Measurement of 6 event shapes also in bins of jet multiplicity and bins of H<sub>T2</sub>
- At low jet multiplicities, Pythia, Sherpa predict less isotropic events than in data
- At higher jet multiplicities, the description is improved while discrepancy in normalisation is observed

Z. Hubacek: Multijet measurements

#### Event shapes as a geometrical problem

- Event shapes together with other concepts unified through a geometric language JHEP07 (2020) 006
- Energy (Earth) mover's distance EMD

   a measure of distance between two probability distributions (Wasserstein metric) = minimal amount of work to rearrange one event *E* into another *E*'



#### Novel event shapes – event isotropies

angle,

\zimuthal

- EMD problem can be solved using Optimal Transport methods
- Event isotropies how far is a collider event *E* from a symmetric radiation pattern *U*, *J*=EMD(*E*,*U*) *J*∈[0,1]
- Completely isotropic events  $\mathcal{I}=0$

3 different  $\mathcal U$  geometries considered

| :                                  | Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Energy Weight                                | Ground Measure                                                                                           | U                                                      |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                    | Cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $w_i^{\text{cyl}} = p_{Ti}/p_{T\text{tot}}$  | $\theta_{ij}^{\text{cyl}} = \frac{12}{\pi^2 + 16y_{\text{max}}^2} \left( y_{ij}^2 + \phi_{ij}^2 \right)$ | $\mathcal{U}_N^{\mathrm{cyl}}( y  < y_{\mathrm{max}})$ |
|                                    | Ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $w_i^{\rm ring} = p_{Ti}/p_{T\rm tot}$       | $ \theta_{ij}^{\rm ring} = \frac{\pi}{\pi - 2} \left( 1 - \cos \phi_{ij} \right) $                       | $\mathcal{U}_N^{\mathrm{ring}}$                        |
|                                    | Ring (Dipole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $w_i^{\text{ring}} = p_{Ti}/p_{T\text{tot}}$ | $\theta_{ij}^{\text{ring}} = \frac{1}{1 - \frac{1}{\sqrt{3}}} \left( 1 - \cos \phi_{ij} \right)$         | $\mathcal{U}_2^{\mathrm{ring}}$                        |
| :<br>• • • •<br>• • • •<br>• • • • | $U_{16}^{Cyl}( y  < 4.5)$ $0.75\pi$ $0.25\pi$ $0.75\pi$ $0.75\pi$ $0.25\pi$ $0.75\pi$ $0.75\pi$ $0.25\pi$ $0.75\pi$ |                                              |                                                                                                          |                                                        |

1.5n

Azimuthal angle,  $\phi$ 

1.25n

1.25

1.5n

Azimuthal angle,  $\phi 17$ 

Z. Hubacek: Multijet measurements

## Event isotropies – $I_{\rm Ring}^2$

- $N_{jet} \ge 2$ ,  $H_{T2} \ge 500 \text{ GeV}$
- 3 isotropy observables binned in  $N_{jet}$  ( $\geq$  2,3,4,5) and  $H_{T2}$  ( $\geq$  500,1000,1500 GeV)
- Overall, the isotropic region is best described by NLO MC



# Event isotropies – $I_{\rm Ring}^{128}$

- Dynamic range 6 orders of magnitude
- Quality of modelling very different from I<sup>2</sup><sub>Ring</sub> (Powheg+Pythia/Herwig very different from other MC)
- Herwig dipole predicts relatively more dijet-like events than angular ordered





#### Summary

- Presented recent QCD multijet studies of ATLAS and CMS collaborations
- Event shapes more complex than inclusive cross sections but allow testing more features of QCD radiation
- Agreement between data and simulations best in balanced, dijet-like systems and gets worse in more isotropic configurations