Studies of the cold nuclear matter (nPDFs)

Óscar Boente García, on behalf of the LHC collaborations
29/11/2022
QCD@LHC, Orsay
boente@llr.in2p3.fr
Introduction

- **Cold Nuclear Matter (CNM) effects**: modifications of particle production yields in ion collisions with respect to \(pp \) that are not due to formation of a deconfined medium, including:
 - Final state effects
 - **Initial state effects**

- Crucial to set the baseline to study AA collisions
- Collinear factorisation approach in pQCD:

\[
\frac{d\sigma^{AB\to k+X}(Q^2)}{d\Omega} = \sum_{i,j,x'} f_{i/A}(x_1, Q^2) \otimes f_{j/B}(x_2, Q^2) \otimes d\hat{\sigma}^{ij\to k+X'}(Q^2), \quad \text{for } Q^2 \gg \Lambda_{\text{QCD}}
\]

- Nuclear Parton Distribution Functions (nPDFs)

\[
R_i^A(x, Q^2) = \frac{f_{i/A}(x, Q^2)}{A f_{i/p}(x, Q^2)}; \quad i = u, d, s, c, \ldots
\]

- Fitted with global analyses considering different processes
- Validity of collinear factorisation approach needs to be constantly monitored

Figure from *Eur.Phys.J.C 82 (2022) 5, 413*
Constraining nPDFs with LHC data

- A variety of LHC datasets have potential to be used to constrain nPDFs:
 - pPb collisions
 - γPb collisions (UPC PbPb)
 - fixed target collisions (Wed 14:00 K. Mattioli talk, parallel A)
- Many channels of interest:
 - Dijets
 - Z and W boson
 - Drell-yan
 - Charm hadrons
 - Light hadrons
 - Direct photons
 - diffractive processes
- Observables: production cross-sections, R_{pA}, R_{FB}, di-particle(jet) correlations...
- Need to keep open many channels simultaneously to understand well the interplay between CNM effects and to extend (x, Q^2) coverage
- Run1 and Run 2 LHC data included in several recent nPDF analyses:
 - EPPS21 (EPJ C82 (2022) 5, 413), nNPDF3.0 (EPJ C82 (2022) 6, 50), nCTEQ15WZSIH (PR D104 (2021) 094005), TUJU21 (PR D105 (2022) 9, 9)
LHC experiment comparison

- Very good complementarity between the four LHC experiments

ATLAS JINST 3 (2008) S08003
CMS JINST 3 (2008) S08004
ALICE JINST 3 (2008) S08002
LHCb JINST 3 (2008) S08005

• Track reconstruction down to $p_T = 0$.
• Excellent p_T and mass resolution.
• Excellent particle identification.
• Precision vertex reconstruction.
Dijet production in pPb collisions

- Dijet production in pPb and pp at 5 TeV
 - Using $\mathcal{L}_{pPb} = 35 \pm 1 \text{ nb}^{-1}$ and $\mathcal{L}_{pp} = 27.4 \pm 0.6 \text{ pb}^{-1}$
 - $\eta_{\text{dijet}} = (\eta_1 + \eta_2)/2$
 - Precision from 2% to 20%
 - Suppression even at large Bjorken-x ($x \sim 10^{-1}$) (EMC effect)
- Data included in EPPS21 and nNNPDF3.0
 - Important reduction of nPDF uncertainties! [EPJ C82 (2022) 6, 507, EPJ C82 (2022) 5, 413]

- Future: triple-differential ($y^*, y^b, p_T^{\text{ave}}$) dijets?
 - See pp result at 8 TeV ([EPJ C77 (2017) 11, 746] with 19.7 fb$^{-1}$

CMS

pPb (35 nb^{-1}), pp (27.4 pb^{-1}) \(\sqrt{s_N} = 5.02 \text{ TeV} \)

- Anti-k_T, $R = 0.3$ jets
- $p_{T,1} > 90 \text{ GeV}$, $p_{T,2} > 20 \text{ GeV}$
- $\Delta \phi_{1,2} > 2\pi/3$

- pp NLO pQCD: CT14

Studies of the cold nuclear matter (nPDFs)

Óscar Boente García

29/11/2022
Dijet correlations in \(pPb \) collisions

- Dijet correlations and yields from ATLAS
 (PR C100 (2019) 034903)
 - Using \(\mathcal{L}_{pPb} = 0.36 \text{ nb}^{-1} \) and
 \(\mathcal{L}_{pp} = 25 \text{ pb}^{-1} \) at 5 TeV
 - Jets of \(R = 0.4 \) and in \(|y^*| < 4 \)
 - Observables:
 \[
 C_{12}(p_{T,1}p_{T,2}, y^*_1, y^*_2) = \frac{1}{N_1} \frac{dN_{12}}{d\Delta\phi}
 \]
 \[
 \rho^p_{W} = \frac{W_{pp}}{W_{12}}, \text{ with } W_{12} = \text{RMS}(C_{12})
 \]
 \[
 \rho^p_{I} = \frac{I_{pp}}{I_{12}}, \text{ with } I_{12} \text{ dijet conditional yields}
 \]
 - \(\rho^p_{I} \) suppressed for forward dijets pairs, (shadowing region \(x \lesssim 10^{-3} \))
 - No modification for backward-forward jets
 - Ratio of correlation functions RMS \(\rho^p_{W} \) does not show modification

\(\rho^p_{W} \) with ATLAS data:
- 2015 \(pp \) data, 25 \(\text{ pb}^{-1} \)
- 2016 \(p+Pb \) data, 360 \(\mu\text{b}^{-1} \)

\(\rho^p_{I} \) with ATLAS data:
- 2015 \(pp \) data, 25 \(\text{ pb}^{-1} \)
- 2016 \(p+Pb \) data, 360 \(\mu\text{b}^{-1} \)
Production of W bosons in pPb

- Charge asymmetry A_{ch} helps to separate $u\bar{d}$ (W^+) and $\bar{u}d$ (\bar{W}^-) flavours
- Run 2 data from CMS and ALICE
- CMS data included in most nPDF fits
- ALICE A_{ch} in forward bin not reproduced by models (more than 5σ discrepancy)
- R_{pPb} of W^- shows tension in backward region with models
- No variation of $\sigma_{pPb}^{W^\pm}$ with respect to centrality
Drell-Yan and Z production in central region

- CMS measurement with Run2 data at 8.16 TeV
- Low-mass ($15 < m_{\mu\mu} < 60$ GeV/c) and high-mass ($60 < m_{\mu\mu} < 120$ GeV/c) regions
 - First measurement at LHC of low-mass in pPb covering $-2.87 < |\eta_{lab}| < 1.93$
 - Measurement in $m_{\mu\mu}$, y_{CM}, p_T and ϕ^*, where $\phi^* = \tan\left(\frac{\pi - \Delta \phi}{2}\right)\sin(\theta^*_\eta)$ with $\cos(\theta^*_\eta) = \tanh(\Delta \eta/2)$
 - Correlation matrices of systematic uncertainties
- Forward-to-backward ratio shows more precision than EPPS16 and nCTEQW/Z
Z boson in forward and backward regions

- LHCb and ALICE measured $Z \rightarrow \mu^+\mu^-$ in the forward and backward regions with Run 2
 - LHCb measurement includes p_T, y^* and ϕ^* dependance, R_{FB} and R_{pPb}
 - correlation matrices of systematic uncertainties
- Can extend CMS constrains towards lower and higher x
- Both measurements in general agreement with EPPS16 and nCTEQ15 predictions
- ALICE data included in nNNPDF3.0 (EPJ C82 (2022) 6, 50), LHCb not yet

LHCb: arXiv:2205.10213

ALICE: JHEP 2009 (2020) 076
LHCb measured D^0 meson production with Run 1 data ($\mathcal{L}_{p\text{Pb}} \sim 1.5 \text{ nb}^{-1}$) in $1.5 < y^* < 4.0$ and $-5.0 < y^* < -2.5$

- Measure double-differential cross-sections, $R_{p\text{Pb}}$ and R_{FB}
- Data included in EPPS21 (EPJ C82 (2022) 5, 413) and nNNPDF3.0 (EPJ C82 (2022) 6, 50)
 - Drastic reduction of nPDF uncertainties down to $x \sim 10^{-6}$

Figure 4.5. Comparison of the nPDFs of lead nuclei at $Q = 10 \text{ GeV}$ between nNNPDF3.0 (no LHCb D^0) and nNNPDF3.0, normalised to the central value of the former.

Figure 4.6. Same as Fig. 4.5 now presented in terms of the terms of the nuclear modification ratios $R(\mathcal{A}) f(x, Q)$. Accounting for the correlations between proton and lead PDFs. In the case of the sea quark PDFs, the enhanced shadowing for $x \approx < 10^{-3}$ and the corresponding uncertainty reduction is qualitatively similar to that observed at the lead PDF level. The preference of the LHCb D^0-meson production measurements for a strong small-x shadowing of the quark and gluon PDFs of lead is in agreement with related studies of the same process in the literature [86, 97, 98].

Whenever the nuclear ratios deviate from unity, $R(\mathcal{A}) f(x, Q) \neq 1$, the fit results favour non-zero nuclear modifications of the free-proton PDFs. However, such non-zero nuclear modifications will not be significant unless the associated nPDF uncertainties are small enough. In order to quantify the local statistical confidence, EPPS16, EPPS21 nuclear err., EPPS21 full err.
D^0 meson production

- New LHCb D^0 meson production measurement with Run 2 data ($\mathcal{L}_{pPb} \sim 30 \text{ nb}^{-1}$)
- Finer y^* binning and extended range to $p_T \in [0,30] \text{ GeV}/c$
- Comparison with HELAC-Onia predictions with EPPS16 and nCTEQ15 weighted with Run1 D^0 data
 - Discrepancy in backward rapidity at high p_T with reweighted nPDF predictions
 - Great potential for additional constrains

y^* integrated

in y^* intervals

![Graphs showing R_{pPb} as a function of p_T for different y^* intervals.](image)
Hadrons: π^0 meson production

- Precise measurement π^0 spectrum from ALICE and LHCb Run 2 data
- Very wide phase-space coverage:
 - ALICE: $-0.3 < y < 1.3$ and $0.3 < p_T < 200$ GeV/c
 - LHCb: $2.5 < \eta_{CM} < 3.5$, $-4.0 < \eta_{CM} < -3.0$ and $1.5 < p_T < 10$ GeV/c
- Excess in backward region over nPDF predictions
 - ALICE data included in nCTEQ15WZSIH (PR D104, 094005)
 - Considers π^\pm, K^\pm ALICE data (PL B760, 720 (2016))
 - Also new LHCb charged hadron result with wide η coverage in $-5.3 < \eta < -2.5$ and $2.0 < \eta < 4.3$ (PRL 128 (2022) 142004)
Prompt photons in pPb

- Direct/prompt photons provide direct access to initial conditions of nuclei
- ATLAS measurement with Run2 data
 - Isolated photons in cone of $\Delta R = 0.4$
 - measured $d\sigma/E_T^\gamma$, R_{pPb} and R_{FB}
 - large energy-loss contribution is not observed
 - compatible with expectations from EPPS16 and nCTEQ15
 - Included in nNNPDF3.0 fit (EPJ C82 (2022) 6, 50)
- Access to lower γ energy?
 - Preliminary plot from ALICE
 - LHCb potential in forward & backward regions
 - ALICE FoCal detector in Run4: photons of $p_T > 2$ GeV/c in $3.4 < \eta < 5.8$

Link to repository

CERN-LHCC-2020-009

ALICE Preliminary

pPb fit is 5.02 TeV

$L_{\text{int}} = 4.96\text{n}b^{-1}$, $|\eta| < 0.67$

$R = 0.4$, $p_T^{\text{min}} < 1.5$ GeV/c

NLO JETPHOX $\times x^{10}$

NNPDF40 PDF, nNNPDF30 nPDF

BFG II FF

$R = 0.4$, $p_T^{\text{min}} < 2$ GeV/c

Data/JETPHOX

Ratio with stat. unc.

Systematic uncertainty

Theory scale uncertainty $p_T^{1/2} < \mu < 2x p_T^{1/2}$

ATLAS

$\sqrt{s} = 8.16$ TeV $p+Pb$, 165 nb$^{-1}$

$-1.09 < \eta^* < 1.90$

$-1.84 < \eta^* < 0.91$

$-2.83 < \eta^* < -2.02$

EIC fit

- no E-loss
- $\mu = 0.35$ GeV, $\lambda_q = 1.5$ fm
- $\mu = 0.35$ GeV, $\lambda_q = 1$ fm

EIC

[32]

nNNPDF 1.0

FOCAL fit

Constrains from γPb process

- CMS measured dijet azimuthal correlations in exclusive γPb processes
 - RAPGAP model overestimates strength of correlations \textit{CPC 86 (1995) 147}
 - soft gluon radiation calculation (Hatta et. al.) reproduces low Q_T \textit{PRL 126 (2021) 142001}
 - information of gluon polarization in nuclei

- Preliminar ATLAS measurement of dijet production in γPb
 - ZDC tag events without nuclear break-up, results for results for $0nXn$ condition
 - Complementary (x, Q^2) coverage to pPb dijets
 - expectations to increase precision in final result

- Exclusive quarkonia production in UPC → see Wed. 16:00, A. Matyja talk, parallel A

\textbf{ATLAS-CONF-2022-021}

\textbf{arXiv:2205.00045}
Conclusions and prospects

- **Huge progress of the understanding of CNM** in the recent years, with LHC data playing a major role
- **LHC pPb** data (dijets, D^0,...) sets unprecedented constraints to nPDF
- **Tensions with nPDF** predictions in several recent measurements not yet included in global analyses, such as:
 - W^\pm production in forward/backward regions (ALICE)
 - D^0 production in backward region (LHCb)
- **γPb** interactions in UPCs provide a **unique source of information** (strength of gluon polarization)

- **Prospects for Run3/Run4:**
 - **great increase in statistics from a new pPb run**, several measurements now limited to pp collisions would become possible
 - Future pO run crucial do reduce nPDF uncertainties by setting constrains to a medium size nucleus

 OMB Some of the mentioned measurements can be performed with very limited statistics (i.e. light hadron production)
Backup