

Qibin Liu

TDLI. & Shanghai JiaoTong University

On behalf of ATLAS and CMS collaborations

Introduction

- Multiboson production:
 - Di-boson production: Zy, Wy, WZ, WW, and so on
 - Vector boson scattering (VBS): EWK Zy, Wy, WW and so on
 - Tri-boson production such as WWW and Zγγ
- Observation of rare processes predicted by SM but never seen before
- Precision measurement of SM such as inclusive/differential cross-section and polarization
- Validation of EWK & QCD modelling and search for SM breakdown (beyond SM)
- Sensitive probe to BSM and crucial inputs for effective field theory (EFT) study
 - Constraints to anomalous triple and quartic gauge coupling (aTGC/aQGC)

*cartoon from higgstan

More VBS specific results in Michael's talk!

Non-tight ID LoosePrime[,]

Tight ID

С

Α

Isolated

 $E_{T}^{iso} < 0.065 p_{T}$

ATLAS-CONF-2022-047 Differential $Z(\rightarrow ll)_{\gamma}$

Inputs and constraints on the modeling of additional QCD activity in di-boson events: e.g. improvement of ZZ estimation on DM searches

 $\Delta z > 50 \,\mathrm{mm}$

Data, pixel conv

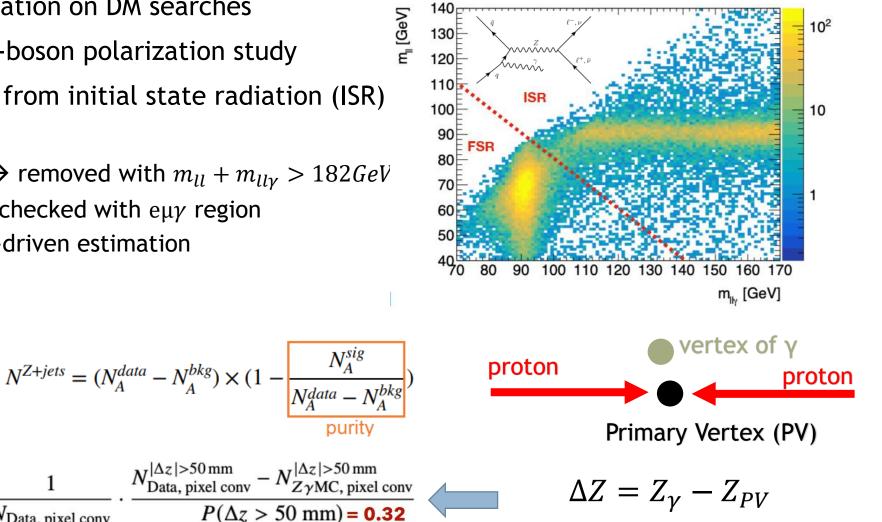
- Meaningful for EFT and Z-boson polarization study
- Signal: $Z \rightarrow II$ with photon from initial state radiation (ISR)
- Background:

Isolation gap

D

B

Non-isolated

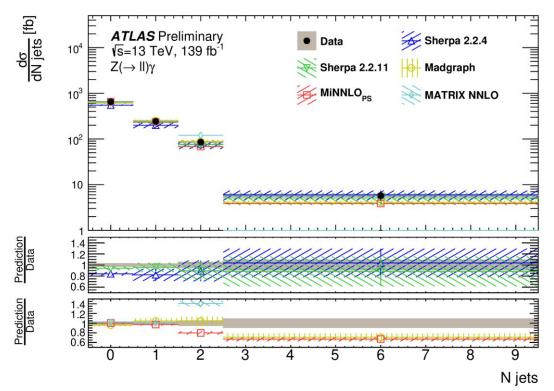

 $E_T^{iso} > 0.065 p_T + E_{gar}$

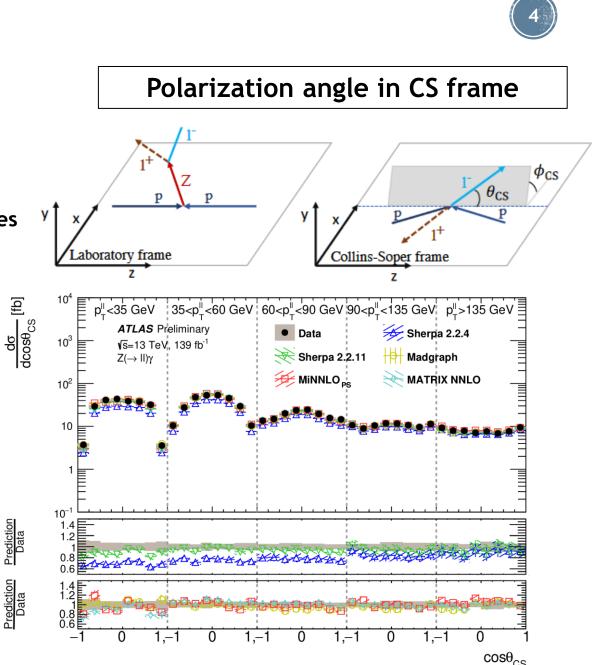
• Final state rad. process \rightarrow removed with $m_{ll} + m_{ll\nu} > 182 GeV$

N_{Data}, pixel conv

- $t\bar{t}\gamma$ process \rightarrow modelling checked with $e\mu\gamma$ region
- Z+jets and pileup \rightarrow data-driven estimation

 f_{PU}




$\frac{\text{ATLAS-CONF-2022-047}}{\text{Differential } Z(\rightarrow II) \gamma}$

- Measured plenty of observables:
 - 1D variables for QCD study and analyses like $ZH(\rightarrow inv)$:

 N_{jets} , p_T^j , m_{jj} , HT, $\Delta \Phi(jet, \gamma)$, $\Delta R(l, l)$, $p_T^{Z\gamma}$,...

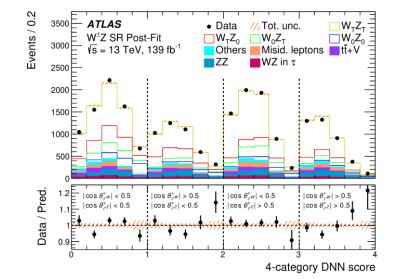
- 2D variables sensitive for QCD: eg. $p_T^{Z\gamma}/m_{Z\gamma}$ in $m_{Z\gamma}$ slices
- 2D variables for polarization study: $\cos \theta_{CS}$ and ϕ_{CS} in p_T^Z slices
 - First time to measure the lepton angular coefficient in DY events with $\boldsymbol{\gamma}$

Phys. Rev. D 105 (2022) 052003 Differential $W(\rightarrow lv)\gamma$

Important test of SM and probe of WWγ TGC vertex W^+ Radiation amplitude zero (RAZ) observed: the suppression at $\Delta \eta(l, \gamma) = 0$ W⁺ W^+ W^+ Interference resurrection: sensitivity to interference improved by measuring the lepton $\mathcal{O}_{3W} = \epsilon^{ijk} W^{i\nu}_{\mu} W^{j\rho}_{\nu} W^{k\mu}_{\rho}$ angle information and photon momentum x-z plane $\sigma(C_{3W}) = \sigma^{SM} + C_{3W}\sigma^{int} + C_{3W}^2\sigma^{BSM}$ • Limits set on O_{3W} EFT operator: C_{3W} coeff W[±] CMS 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) $\Delta\sigma/\Delta(\Delta\eta(l,\gamma))$ (fb) $W^{\pm}(l^{\pm}\nu)\gamma$ Measured CMS 138 fb⁻¹ (13 TeV MG5_aMC + PY8 (≤1j NLO QCD + PS) 10 10' **CMS** GENEVA + PY8 (NNLO QCD + PS) Λ e< 300 $\frac{\pi}{6} \leq |\phi_i| < 1$ $\frac{\pi}{2} \leq |\phi_i| < \frac{\pi}{2}$ $0 \leq |\phi_{\ell}| < \frac{1}{2}$ $W^{\pm}(I^{\pm}v)\gamma$ GeV — – 95% CL SM+int. only MATRIX (NNLO QCD) - Data 10³ MCFM (NNLO QCD) W(ly) (NNLO QCD + NLO EW) Nonprompt/misid. y C_{3M} $\frac{\pi}{6} < |\phi| < \frac{\pi}{2}$ Nonprompt/misid. Events / 10² $0 < |\phi| < \frac{1}{2}$ 200 $Z/\gamma^*(ee) (e \rightarrow \gamma)$ $Z/\gamma^*(II)\gamma$] Sinale-t + γ Stat.+Syst. Uncertainty $C_{3W} = 0.2 \text{ TeV}^{-2}$ = -0.2 TeV⁻² 100 10 • • • 10-2 $\sigma_{MG5})/\sigma_{MG5}$ 10⁻³ 10 0.5 Data/Exp with ϕ information -10 800 1000 1200 1400 200 400 600 1000 1200 $\Delta \eta(l,\gamma)$ 500 1000 1500 p_{-}^{γ} (GeV) p_{τ}^{γ} cutoff (GeV)

TGC vertex

Polarized W[±]Z



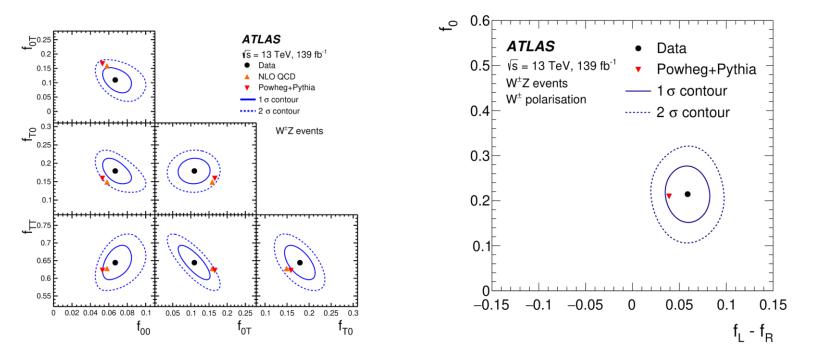
- Joint-polarisation states of W and Z gauge bosons in $W \pm Z$ production (leptonic mode)
- Rare process: about 17000 WZ with full Run2 and joint-polarized events about 1000

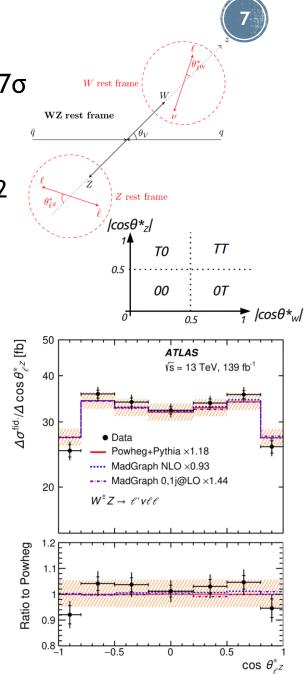
Signal:

- Inclusive WZ using Powheg-Box v2 NLO + reweighting to polarized state
- Polarized WZ using MadGraph 2.7.3 LO (WZ+0,1j@LO) used to train the reweighting deep neural network
- Background: 3 or more lepton (ZZ, $t\bar{t}V$, τll , so on), fake lepton (Z+jets, so on)
- Deep neural network trained to separate different polarization states
 - Input with leading importance: $|y_{lW} y_Z|$, p_T^{WZ} , p_T^{lW} , $\Delta \Phi(lW, lv)$

	Signal Region		
	Pre-fit	Post-fit	
WZ in τ	620 ± 60	630 ± 60	
ZZ	1420 ± 120	1630 ± 50	
$t\bar{t} + V$	870 ± 130	$830~\pm~120$	
Misid. leptons	1170 ± 230	$1010 ~\pm~ 220$	
Others	800 ± 90	$790~\pm~90$	
W_0Z_0	920 ± 40	$1190~\pm~160$	
$W_0 Z_{\mathrm{T}}$	2670 ± 50	$1900~\pm~500$	
$W_{\rm T}Z_0$	2670 ± 60	$3100~\pm~400$	
$W_{\mathrm{T}}Z_{\mathrm{T}}$	10200 ± 230	$10900 ~\pm~ 600$	
Total MC	21400 ± 600	$21950~\pm~170$	
Data	21936		

		f_{00}
	e energy scale and id. efficiency	0.00019
	μ energy scale and id. efficiency	0.0004
	$E_{\rm T}^{\rm miss}$ and jets	0.0017
]	Pile-up	0.00031
]	Misidentified lepton background	0.0012
	ZZ background	0.0004
(Other backgrounds	0.0016
	Parton Distribution Function	0.00017
	QCD scale	0.00010
	Modelling	0.005
	Total systematic uncertainty	0.005
	Luminosity	0.00015
	Statistical uncertainty	0.007
,	Total	0.010

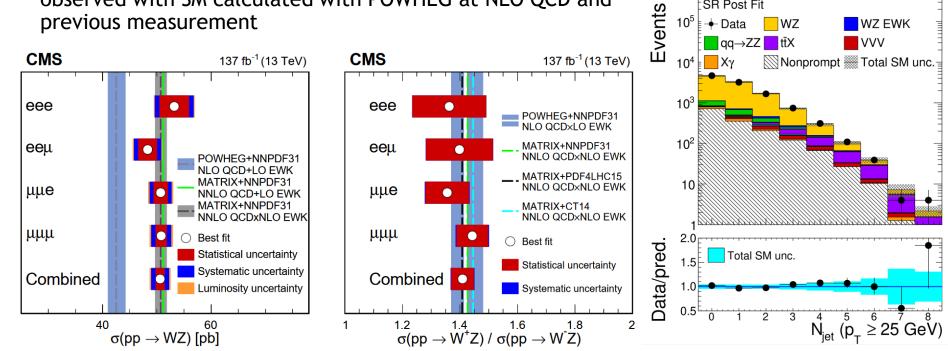



Polarized W[±]Z

- Simultaneous pair-production of longitudinally polarized vector bosons : 7σ
- Joint helicity fractions integrated over the fiducial region measured
 - \rightarrow agrees SM at NLO
- $f_{00} = 0.067 \pm 0.010$, $f_{0T} = 0.110 \pm 0.029$, $f_{T0} = 0.179 \pm 0.023$ and $f_{TT} = 0.644 \pm 0.032$

longitudinal--- Individual helicity fractions also measured and consistent within correlations

- Inclusive $\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 64.6 \pm 2.1 \text{ fb}$ VS NNLO QCD SM prediction = $64.0^{+1.5}_{-1.3} \text{ fb}$
- Differential cross-section measured for polarization sensitive variables



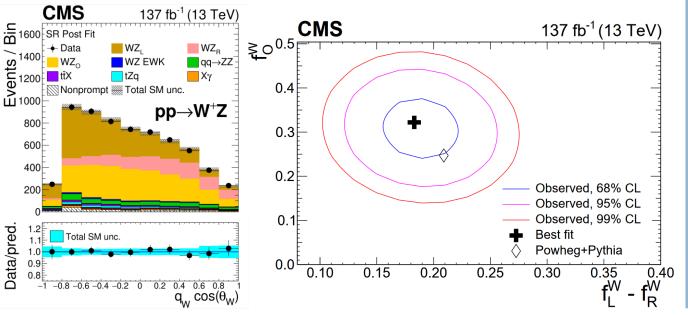
JHEP 07 (2022) 032

Measurement of WZ

- Measure the WZ associated production (leptonic decaying)
- Dominant bkg. from Z+jets and $t\bar{t}$ [2.4%], V V and $t\bar{t}$ V [14%]
- Inclusive cross-section measured 50.6 \pm 0.8 (stat) \pm 1.4 (syst) \pm 1.1 (lumi) \pm 0.5 (theo) pb = 50.6 \pm 1.9pb
- Agrees with SM from MATRIX at NNLO QCD and NLO EWK $(50.7^{+1.1}_{-1.0} \text{ pb})$; consistent with earlier ATLAS/CMS results
- Compatible charge asymmetry ratio A_{WZ}^{\pm} =1.41 ± 0.04 observed with SM calculated with POWHEG at NLO QCD and previous measurement

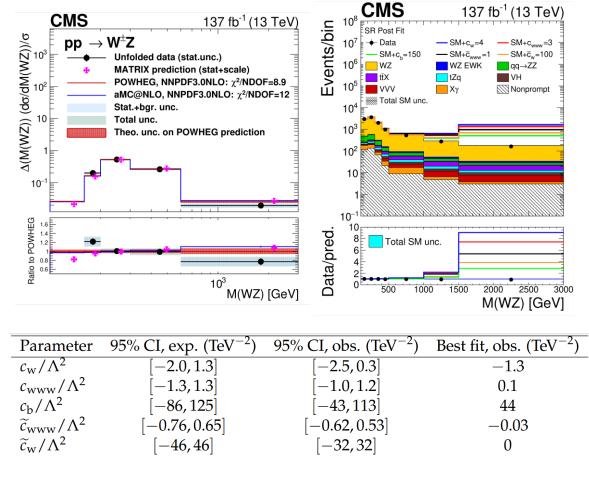
10⁵

Triple gauge coupling(TGC) $\sigma_{\rm fid}(\rm pp \rightarrow W^+Z)$ $W_{WZ}^{+-} =$ $\sigma_{\rm fid}(\rm pp \rightarrow W^{-}$ CMS 137 fb⁻¹ (13 TeV) CMS 137 fb⁻¹ (13 TeV) SR Post Fit SR Post Fit Events 10 WZ WZ EWK Data 🔶 Data WZ WZ EWK tZq qq→ZZ qq→ZZ tīX 🕅 Nonprompt 🚟 Total SM unc. 10° Data/pred Total SM unc 0.8 0.6 $p_{T}^{200}(I_{W}) [GeV]^{30}$ 150 50 100


<u>JHEP 07 (2022) 032</u>

Measurement of WZ

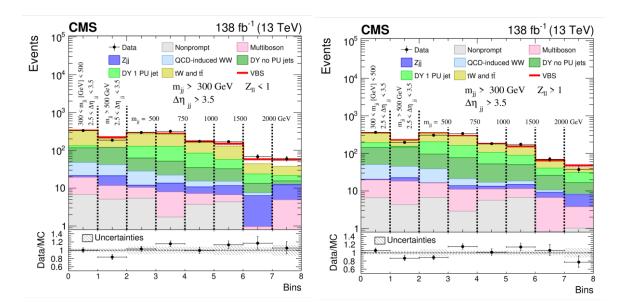
- Vector boson polarization fraction measured in the helicity frame with charge inclusive/exclusive final states
- Longitudinally polarized W bosons in WZ production: first observation at 5.6σ (4.3σ expected)!
- Longitudinally polarized Z bosons: well beyond 5σ

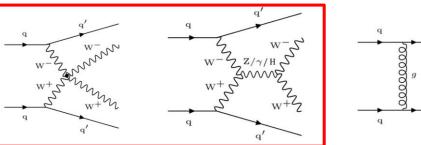

Polarization fraction

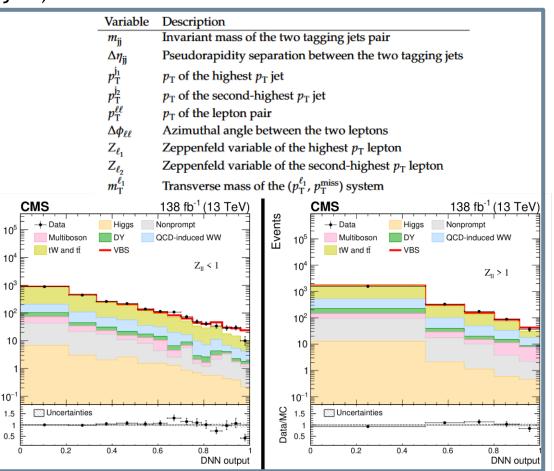
 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{W}^{\pm}} = \frac{3}{8} \left\{ \left[1 \mp \cos(\theta_{W}^{\pm}) \right]^{2} f_{L}^{W} + \left[1 \pm \cos(\theta_{W}^{\pm}) \right]^{2} f_{R}^{W} + 2\sin^{2}(\theta_{W}^{\pm}) f_{0}^{W} \right\}$

- Differential cross-section measured and data favor MATRIX over POWHEG
- New constraints on charged anomalous triple gauge coupling (aTGC, dim-6): 2x stronger than previous

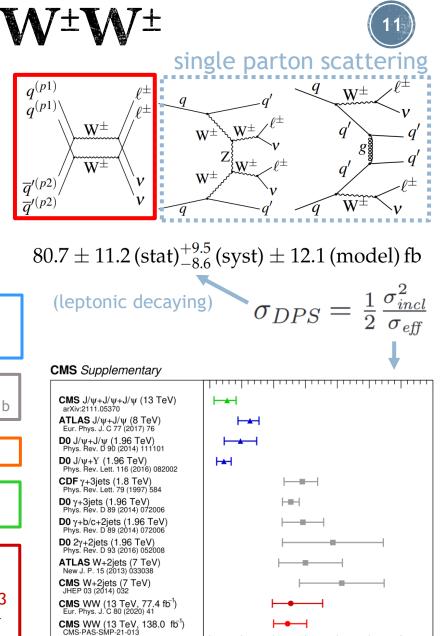
SMP-21-001(Phys. Lett. B accepted)


Observation of EWK W \pm W^{\mp} (leptonic decay)


Events


Data/MC

- EW scattering: study EW symmetry breaking and probe of BSM
- Exactly 2 opposite sign lepton and 2 jets with large $\Delta \eta$ and high m_{jj}
- Signal enriched with small Zeppenfeld: $Z_{l1l2} = \frac{1}{2} \left| \left(\eta_{l1} \frac{1}{2} (\eta_{j1} + \eta_{j1}) \right) + \left(\eta_{l1} \frac{1}{2} (\eta_{j1} + \eta_{j1}) \right) \right|$
- Background from QCD WW, $t\bar{t}$ (tW), DY and non-prompt lepton (W+jets)
- Observed with 5.6σ (5.2σ expected)
- Fiducial cross-section measured 10.2 ± 2.0 fb, consistent with SM prediction of 9.1 ± 0.6 fb



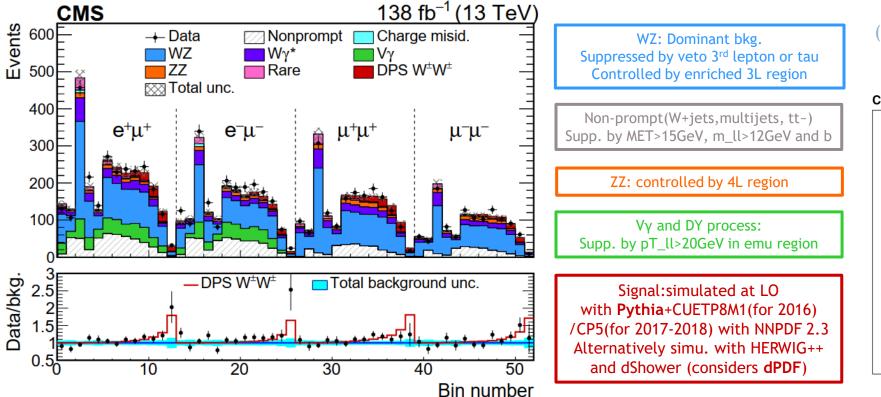
<u>SMP-21-013</u> (Phys. Rev. Lett. accepted) **Double parton scattering** W[±]W[±]

- First observation of W[±]W[±] bosons from double parton scattering (significance 6.2σ)
- Probe the transverse profile of the proton and its energy evolution
- Angular and momentum uncorrelated final states and information encoded in the σ_{eff}
- Clear leptonically decaying and little additional jet (suppress single parton process)
- Multivariate discriminants(BDT) used to distinguish the signal from background

Ω

10

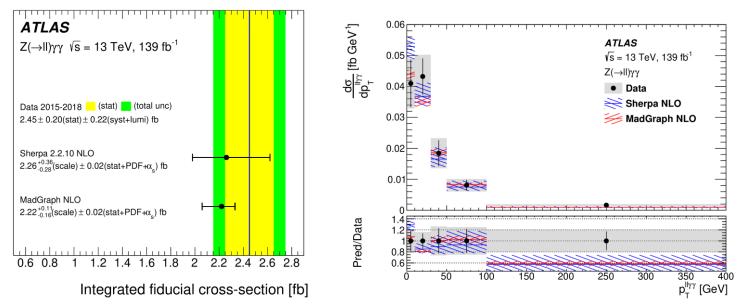
15

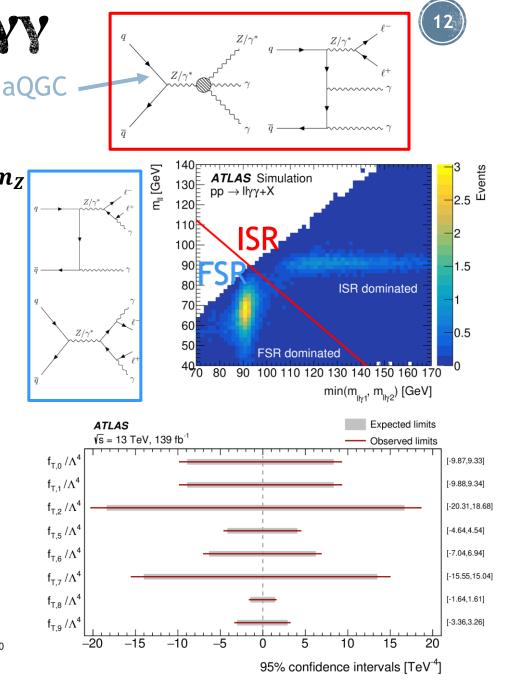

20

25

30

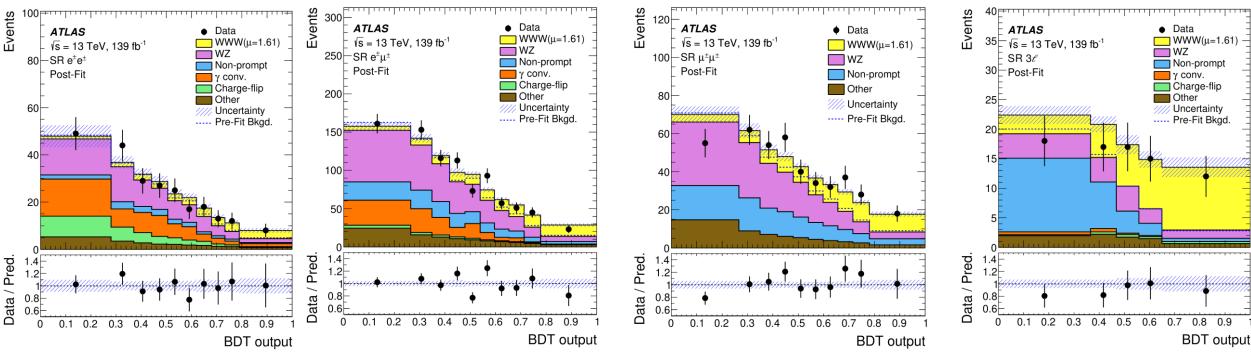
 σ_{eff} (mb)

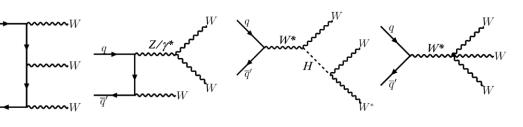

35



$\frac{\text{STDM-2021-09}}{\text{Measurement of } Z(\rightarrow II)}$

- First measurement of fully ISR Zγγ production
- Signal generated using Sherpa2.2.10 (0j@NLO, 1,2j@LO)
- FSR photon explicitly removed with $\min(m_{ll\gamma 1},m_{ll\gamma 2})+m_{ll}>2m_Z$
- Largest(20%) bkg. is non-prompt photons estimated from data
- Integrated cross-section measured with a precision of 12%
- Differential meas. good with SM except discrepancy at high- $p_T^{ll\gamma\gamma}$
- Limits set on Wilson coeff. of dim-8 EFT operator using p_T^{ll}



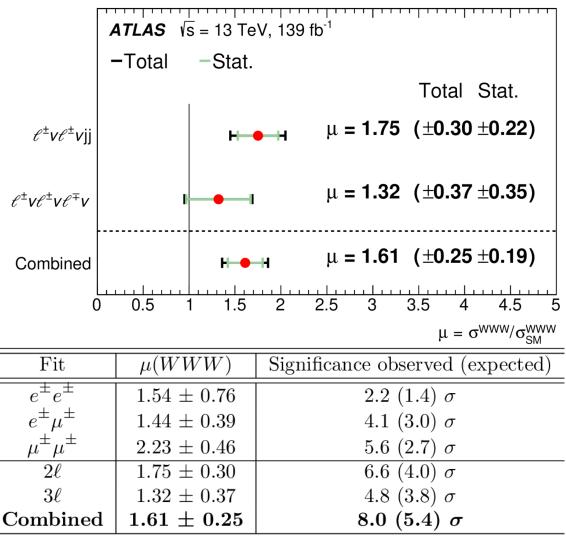


Phys. Rev. Lett. 129 (2022) 061803

Observation of W[±]W[∓]W[∓]

- Test of SM boson self-interactions via triple and quartic gauge coupling and search for BSM hint
- Final states with 2L ($I \mp v I \mp v jj$) or 3L ($I \pm v I \mp v I \mp v$)
- Background from WZ, non-prompt $(t\bar{t})$, photon-conversion, charge-flip
- Multivariate technique (BDT) trained to separate signal/background
- Binned maximum-likelihood fit performed to extract the signal

constrained by $l e^+ e^-$ or $l \mu^+ \mu^-$ control region



Phys. Rev. Lett. 129 (2022) 061803 Observation of W[±]W[∓]W[∓]

14

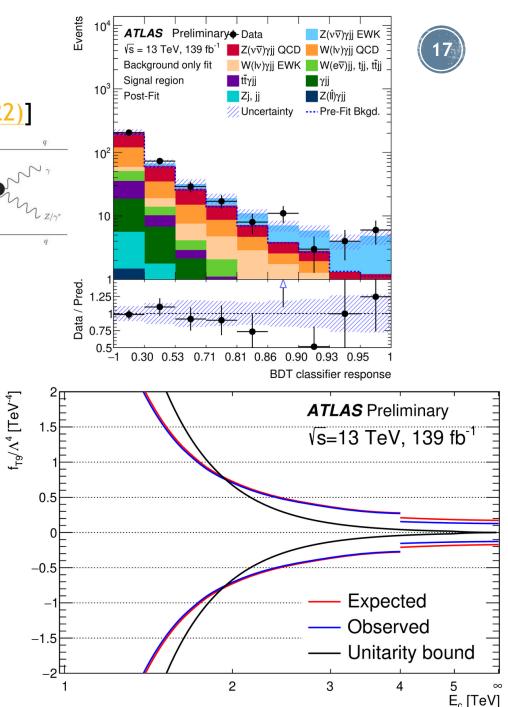
- Largest systematic uncertainty from non-prompt data-driven estimation of and WZ modelling
- WWW production observed with 8.0σ (5.4σ expected)
- Inclusive cross-section 820 ± 100 (stat) ± 80 (syst) fb
 - SM Prediction: 511 ± 18 fb at NLO QCD and LO EW
 - 2.60 derivation from SM prediction

Uncertainty source	$\Delta\sigma/\sigma$ [%]
Data-driven background	6.0
Prompt-lepton-background modeling	3.0
Jets and $E_{\rm T}^{\rm miss}$	2.6
MC statistics	2.5
Lepton	2.2
Luminosity	1.9
Signal modeling	1.5
Pile-up modeling	1.0
Total systematic uncertainty	9.9
Data statistics	11.6
WZ normalizations	3.1
Total statistical uncertainty	12.0

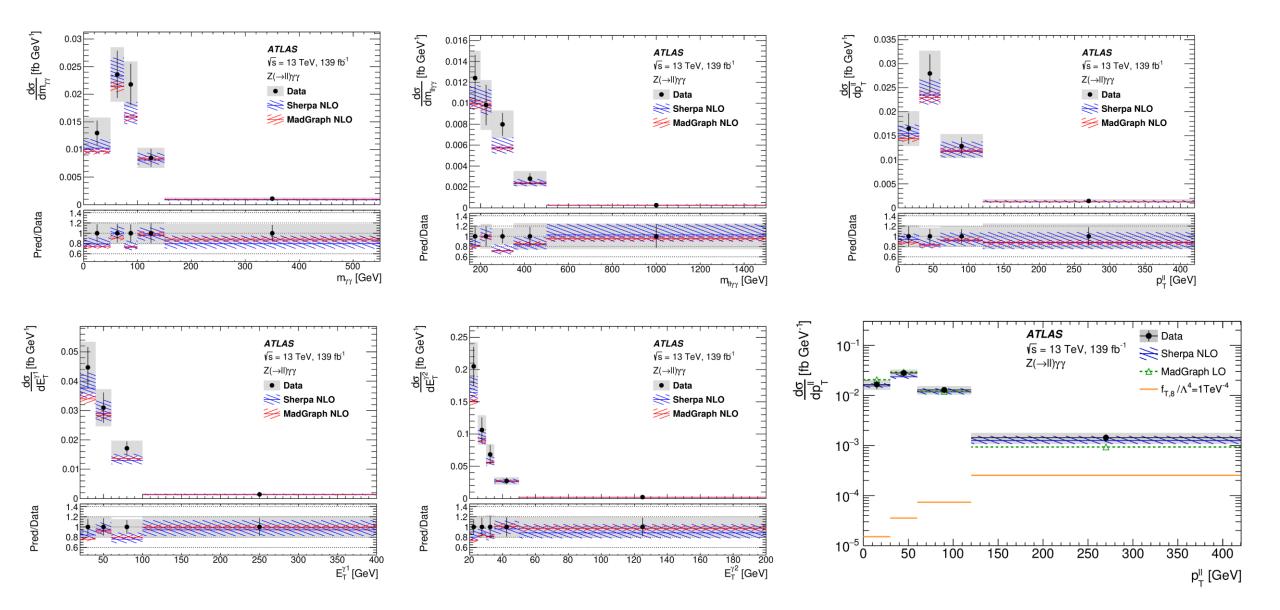
Summary

- Recent results from ATLAS and CMS experiments of multiboson production presented
 - Measurement of <u>differential cross-section</u> of $Z(\rightarrow ll)\gamma$
 - Measurement of <u>differential cross-section</u> of $W(\rightarrow l\nu)\gamma$ dim-6 EFT interpretation
 - Measurement of joint-polarized W[±]Z production
 - Measurement of WZ production
 NNLO QCD
 dim-6 EFT interpretation
 - **Observation** of electroweak production of $W^{\pm}W^{\mp}$
 - <u>Observation</u> of W[±]W[±] production from double parton scattering
 - Measurement of <u>differential cross-section</u> of $Z(\rightarrow ll)\gamma\gamma$ dim-8 EFT interpretation
 - <u>Observation</u> of W[±]W[∓]W[∓] production
 2.6σ derivation from SM prediction
- No significant deviation from SM prediction
- Limits on aQGC and aTGC refreshed with new precise measurement
- Run3 data with higher stats will allow for more precise measurement of SM and better sensitivity for BSM including EFT interpretation \rightarrow worth looking forward to!

(16) Backups



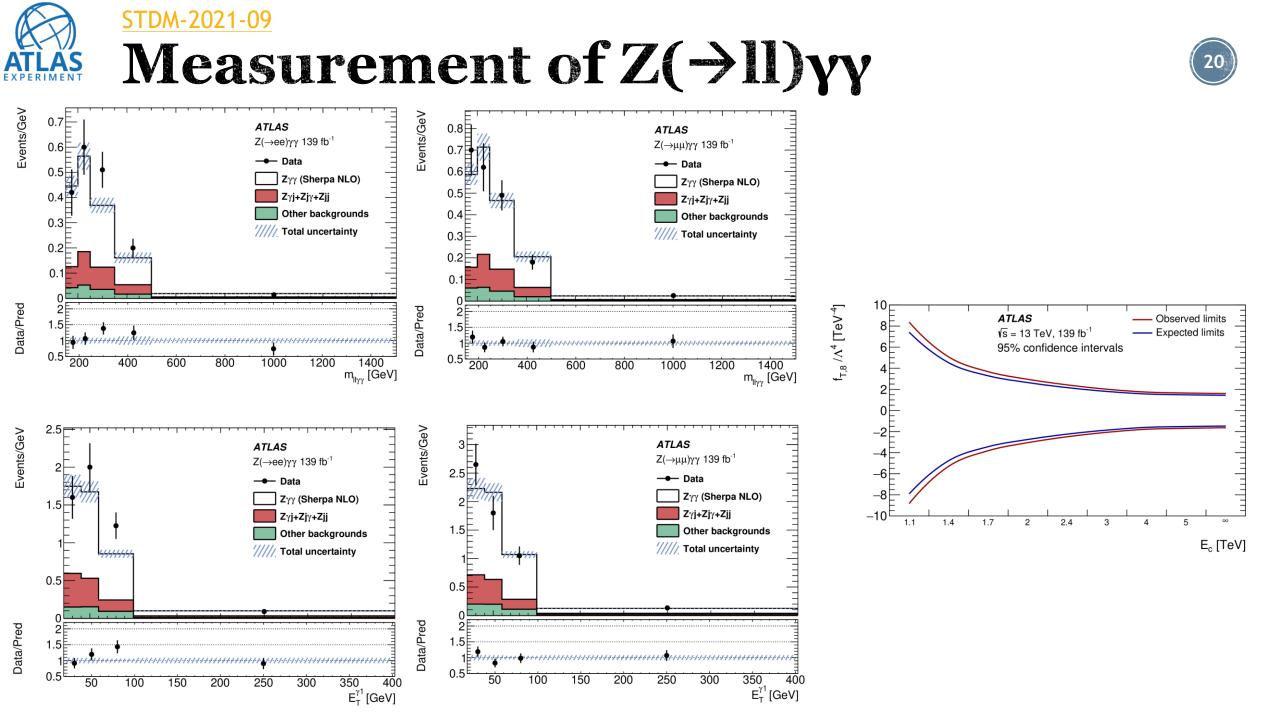
$\frac{2208.12741}{EWZ(\rightarrow vv)vjj}$


- EW Z(\rightarrow vv) γ jj previously observed in ATLAS [EPJC. 82, 105 (2022)]
 - 5.2 σ significance with $p_T^{\gamma} \in [15, 110]$ GeV
- Measurement of EW $Z(\rightarrow \nu \nu)\gamma jj$ with high p_T^{γ} >150GeV
 - Sensitive phase space to aQGC study
- Dominant background from QCD $Z(\rightarrow \nu \nu)\gamma$ and $W(l\nu)\gamma/tt\gamma$
- Fake photon and MET bkg. estimated with data-driven
- Boosted decision tree developed to increase S/B and used as fitting discriminant in SR
- No significant deviation observed from SM prediction
- Limit set on EFT dim-8 operator, in particular strong limit on $f_{T5}/\Lambda^4,\,f_{T8}/\Lambda^4$ and f_{T9}/Λ^4

Coefficient	$E_{\rm c}$ [TeV]	Observed limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]
f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$
f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$
f_{T8}/Λ^4	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$
f_{T9}/Λ^4	1.9	$[-7.9, 7.9] \times 10^{-1}$	$[-8.1, 8.1] \times 10^{-1}$
f_{M0}/Λ^4	0.7	$[-1.6, 1.6] \times 10^2$	$[-1.5, 1.5] \times 10^2$
f_{M1}/Λ^4	1.0	$[-1.6, 1.5] \times 10^2$	$[-1.4, 1.4] \times 10^2$
f_{M2}/Λ^4	1.0	$[-3.3, 3.2] \times 10^{1}$	$[-3.0, 3.0] \times 10^{1}$

unitarity-preserving

$\frac{\text{STDM-2021-09}}{\text{Measurement of } Z(\rightarrow II)} YY$


	$e^+e^-\gamma\gamma$	$\mu^+\mu^-\gamma\gamma$
Data	148	171
	Background predictions	
$Z\gamma j + Zj\gamma + Zjj$	29.8±5.7 (stat.)±5.5 (sys.)	34.4±6.6 (stat.)±6.3 (sys.)
$t\bar{t}\gamma\gamma$	6.4±0.4 (stat.)±1.4 (sys.)	8.4±0.5 (stat.)±1.8 (sys.)
$ZZ \rightarrow \ell\ell\ell\ell\ell$	1.03±0.10 (stat.)±0.51 (sys.)	1.24±0.11 (stat.)±0.62 (sys.)
$WZ\gamma ightarrow \ell u \ell \ell \gamma$	0.69±0.06 (stat.)±0.35 (sys.)	0.52±0.05 (stat.)±0.26 (sys.)
$Z(\rightarrow \ell\ell)H(\rightarrow \gamma\gamma)$	1.08±0.01 (stat.)±0.22 (sys.)	1.38±0.01 (stat.)±0.28 (sys.)
$Z\gamma + \gamma$	2.07±0.16 (stat.)±0.72 (sys.)	2.74±0.21 (stat.)±0.96 (sys.)
$Z + \gamma \gamma$	1.44±0.04 (stat.)±0.39 (sys.)	1.90±0.05 (stat.)±0.51 (sys.)
Data – background	105.5±12.2 (stat.)±8.1 (sys.)	120.4±13.1 (stat.)±9.4 (sys.)
Signal predictions		
Sherpa NLO	91.5±0.9 (stat.)	119.5±1.0 (stat.)
MadGraph5_aMC@NLO	91.0±1.0 (stat.)	118.1±1.2 (stat.)

	Process	Generator	Order	PDF Set	PS/UE/MPI
Signal	$\ell\ell\gamma\gamma$	Sherpa 2.2.10	NLO	NNPDF3.0nnlo	Sherpa 2.2.10
Sig	ℓℓγγ	MadGraph5_AMC@NLO2.7.3	NLO	NNPDF3.0nlo	Рутніа 8.244
	$Z\gamma$ + jets	Sherpa 2.2.4	LO	NNPDF3.0nnlo	Sherpa 2.2.4
	Z + jets	Powheg Box v1	NLO	CT10nlo	Рутніа 8.186
nud	$t\bar{t}\gamma$	MadGraph5_aMC@NLO2.3.3	LO	NNPDF2.3lo	Рутніа 8.212
Background	$ZZ \rightarrow \ell\ell\ell\ell$	Sherpa 2.2.2	NLO	NNPDF3.0nnlo	Sherpa 2.2.2
ckg	$WZ\gamma \rightarrow \ell \nu \ell \ell \gamma$	Sherpa 2.2.5	NLO	NNPDF3.0nnlo	Sherpa 2.2.5
Ba	$Z(\to \ell\ell)H(\to \gamma\gamma)$	Powheg Box v2	NLO	NNPDF3.0nlo	Рутніа 8.212
	γ + jets	Sherpa 2.2.2	NLO	NNPDF3.0nnlo	Sherpa 2.2.2
	$\gamma\gamma$ + jets	Sherpa 2.2.2	NLO	NNPDF3.0nnlo	Sherpa 2.2.2

Photons	Leptons		
$p_{\rm T}^{\gamma} > 20 { m GeV}$	$p_{\rm T}^{\ell 1} > 30 \text{ GeV}, p_{\rm T}^{\ell 2} > 20 \text{ GeV}$		
$ \eta^{\gamma} < 2.37$	$ \eta^{\ell} < 2.47$		
$E_{\mathrm{T}}^{\mathrm{iso}}/p_{\mathrm{T}}^{\gamma} < 0.07$	dressed leptons		
Event			
$\Delta R(\gamma, \ell) > 0.4, \Delta R(\gamma, \gamma) > 0.4$			
$m_{\ell\ell} > 40 \text{ GeV}$			
$m_{\ell\ell} + \min(m_{\ell\ell\gamma_1}, m_{\ell\ell\gamma_2}) > 2m_Z$			

Source	Relative uncertainty [%]	
	$e^+e^-\gamma\gamma$	$\mu^+\mu^-\gamma\gamma$
Photon identification efficiency	2.5	2.6
Photon isolation efficiency	2.0	2.0
Electron-photon energy resolution	0.2	0.1
Electron-photon energy scale	0.8	0.6
Electron identification efficiency	2.0	-
Electron reconstruction efficiency	0.3	-
Muon isolation efficiency	-	0.4
Muon reconstruction efficiency	-	0.4
Muon trigger efficiency	-	0.3
Muon momentum scale	-	0.2
Pile-up reweighting	2.8	2.9
Monte Carlo signal statistics	1.1	1.0
Signal modelling	1.1	1.1
Integrated luminosity	1.7	1.7
$j \rightarrow \gamma$ backgrounds	7.5	7.6
Other backgrounds	1.7	1.9
Total systematic uncertainty	8.6	7.5
Data statistical uncertainty	11.5	10.9
Total uncertainty	14.5	13.3

