Feynman integrals \& special functions for $p p \rightarrow H j j$ in NNLO QCD

Vasily Sotnikov

University of Zurich \& Michigan State University
in preparation with
S. Abreu, D. Chicherin, H. Ita, B. Page, W. Tschernow, S. Zoia

QCD @ LHC 2022, IJCLab Orsay (France)
$30^{\text {th }}$ November 2022

Introduction

Motivation

- LHC today is a precision machine
- Many measurements statistically limited \rightrightarrows HL-LHC and future colliders
- Theoretical understanding of SM predictions is key to interpret data
- At least NNLO QCD and NLO EW corrections (\oplus parton shower, resummation, ...) must be included to achieve percent level theory uncertainties

$$
\begin{aligned}
& d \sigma_{h_{1} h_{2} \rightarrow X}\left(p_{1}, p_{2}\right)=\sum_{i, j} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i}\left(x_{1}, \mu\right) f_{j}\left(x_{2}, \mu\right) \underbrace{\text { "Hard" partonic cross section }}_{\text {Intrinsic uncertainty }} \begin{array}{l}
\text { d } \hat{\sigma}_{i j \rightarrow X}\left(x_{1} p_{1}, x_{2} p_{2}, \mu\right) \\
\mathrm{d} \hat{\sigma}_{0}\left(1+\alpha_{s} \sigma^{(1,0)}+\alpha_{s C D}^{2} \sigma^{(2,0)}+\alpha \sigma^{(0,1)}+\alpha_{s}^{3} \sigma^{(3,0)}+\alpha \alpha_{s} \sigma^{(1,1)}+\ldots\right) \\
\alpha_{s}\left(M_{Z}\right) \sim 0.1 \\
\alpha\left(M_{Z}\right) \sim 0.01
\end{array}
\end{aligned}
$$

Class of processes

Les Houches "wishlist" [2207.02122]

- NLO QCD, EW conceptually solved, in practice $\lesssim 8$ partons
- NNLO QCD beyond $2 \rightarrow 2$ remarakably challenging both technical and conceptual

process	known	desired
\vdots	\vdots	: QCD precision
$\begin{aligned} & p p \rightarrow V+2 j \\ & p p \rightarrow V+b \bar{b} \end{aligned}$	$\begin{aligned} & \mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}} \\ & \mathrm{NLO}_{\mathrm{QCD}} \end{aligned}$	\square $\mathrm{NNLO}_{\mathrm{QCD}}$ $H \rightarrow b \bar{b}$ decay $\mathrm{NNLO}_{\mathrm{QCD}}$ $+\mathrm{NLO}_{\mathrm{EW}}$ [Rene Poncelet's talk]
\vdots	:	\vdots 仡
$p p \rightarrow H+2 j$	$\begin{aligned} & \mathrm{NLO}_{\mathrm{HTL}} \otimes \mathrm{LO}_{\mathrm{QCD}} \\ & \mathrm{~N}^{3} \mathrm{LO}_{\mathrm{QCD}}^{\left(\mathrm{VBF}^{*}\right)} \text { (incl.) } \\ & \mathrm{NNLO}_{(\mathrm{QCD}}^{(\mathrm{VBF})} \\ & \mathrm{NLO}_{\mathrm{EW}}^{(\mathrm{VBF})} \end{aligned}$	VBF studies $\begin{aligned} & \mathrm{NNLO}_{\mathrm{HTL}} \otimes \mathrm{NLO}_{\mathrm{QCD}} \\ & \mathrm{~N}^{3} \mathrm{LO}_{\mathrm{QCD}}^{\left.(\mathrm{VBF})^{*}\right)} \\ & \mathrm{NNLO}_{\mathrm{QCD}}^{(\mathrm{VBF})} \end{aligned}$
\vdots	\vdots	\vdots

$$
\begin{aligned}
\sigma_{\mathrm{NNLO}}^{F+X}=\sigma_{\mathrm{NLO}}^{F+X}+\int_{\Phi_{F+2}} \mathrm{~d} \sigma_{\mathrm{RR}}+\int_{\Phi_{F+1}} \mathrm{~d} \sigma_{\mathrm{RV}}+\int_{\Phi_{F}} \mathrm{~d} \sigma_{\mathrm{VV}} \\
\text { Two-loop Bertolotti's talk] IR divergences } \\
\text { amplitudes }
\end{aligned}
$$

Structure of analytic loop amplitudes

Rational/algebraic

Feynman rules, particle content Integral \& tensor reduction

Transcendental

Scattering kinematics
Feynman integrals

Function basis

Redundancy

Dim. reg. artifacts
\checkmark Analytic cancellation of IR divergences
$\sqrt{ }$ Enable modern finite-field based methods
\checkmark Amplitudeology friendly

Goal: fully differential cross sections
fast and stable evaluation over whole physical phase space

Setup of the computation

Integral topologies \& kinematics

Roadmap

Hope: the result is pure functions of uniform transcendentality [Henn '13]

Previous work

Canonical DE
 Planar

[Abreu, Ita, Moriello, Page, Tschernow, Zeng '20]

Hexa-box

> [Abreu, Ita, Page, Tschernow '21]

Results through generalized polylogarithms
 [Papadopoulos, Tommasini, Wever '15]

[Canko, Papadopoulos, Syrrakos '20] [Syrrakos '20]
[Kardos, Papadopoulos, Smirnov, Syrrakos, Wever '22]

Function basis (planar)

[Badger, Hartanto, Zoia '21] color-ordered
[Chicherin, VS, Zoia '21]

Semi-numerical DE solution

DiffExp [Moriello '19] [Hidding '20] AMFLow [Liu, Ma, Wang '17] [Liu, Ma '21] SeaSyde [Armadillo, Bonciani, Devoto, Rana, Vicini '22] [Hidding, Usovitsch '22]

- Initial (boundary) conditions
- Cross checks
- Numerical data for analytic work

Differential equations

Finding pure MIs

Great progress,
(semi-)automated in many cases
Canonica [Meyer '18] Epsilon [Prausa '17] Fuchsia [Gituliar, Magerya '17]
DlogBasis [Henn, Mistlberger, V. Smirnov, Wasser '20] Initial [Dlapa, Henn, Yan '20] [Dlapa, Henn, Wagner '22]
[Dlapa, X. Li, Y. Zhang '21]

Does not quite cut it for our case...

Rely on educated guessing, main guides:

- Integrands with constant leading singularities [Arkani-Hamed, Bourjaily, Cachazo, Trnka '10]
- Generalized (unitarity) cuts
- Recycle known simpler results
- Get inspired by symmetries ($\mathcal{N}=4 \mathrm{sYM}$, conformal)
- Guesses are easy to check numerically

Finding pure MIs

Great progress,

(semi-)automated in many cases
Canonica [Meyer '18] Epsilon [Prausa '17]
Fuchsia [Gituliar, Magerya '17]
DlogBasis [Henn, Mistlberger, V. Smirnov, Wasser '20] Initial [Dlapa, Henn, Yan '20] [Dlapa, Henn, Wagner '22]
[Dlapa, X. Li, Y. Zhang '21]

Does not quite cut it for our case...

Rely on educated guessing, main guides:

- Integrands with constant leading singularities [Arkani-Hamed, Bourjaily, Cachazo, Trnka '10]
- Generalized (unitarity) cuts
- Recycle known simpler results
- Get inspired by symmetries ($\mathcal{N}=4$ sYM, conformal)
- Guesses are easy to check numerically

Example:
9 pure integrals (179 in whole family)

$$
\rho_{i}:=q_{i}^{2}
$$

$$
\mu_{i j}:=\ell_{i}^{(D-4)} \ell_{j}^{(D-4)}
$$

$$
\begin{aligned}
& \sqrt{\Delta_{5}} \sqrt{\Delta_{3}^{(1)}} \mu_{12}, \quad \frac{\sqrt{\Delta_{3}^{(1)}}}{\sqrt{\Delta_{5}}} \frac{\partial \mathcal{B}}{\partial \rho_{8}} \\
& \sqrt{\Delta_{5}}\left(2 s_{23} \mu_{22}+\left(s_{23}+s_{45}-p_{1}^{2}\right) \mu_{12}\right), \begin{array}{l}
2 \leftrightarrow 5 \\
3 \leftrightarrow 4
\end{array} \\
& \frac{1}{\sqrt{\Delta_{5}}}\left(2 s_{23} \frac{\partial \mathcal{B}}{\partial \rho_{3}}-\left(p_{1}^{2}+s_{23}-s_{45}\right)\left(\frac{\partial \mathcal{B}}{\partial \rho_{7}}+\Delta_{5} \mu_{12}\right), \begin{array}{l}
2 \leftrightarrow 5 \\
3 \leftrightarrow 4
\end{array}\right. \\
& \operatorname{tr}\left(\not p_{2} q_{2} q_{3} \not q_{8} q_{7} \not q_{6} \not q_{5} \not p_{4}\right) \quad, \quad \begin{array}{l}
2 \leftrightarrow 5
\end{array} \\
& \sqrt{\Delta_{3}^{(1)}} \operatorname{tr}\left(\not q_{5} \not \phi_{5} \not p_{2} q_{2} \not q_{3} \not q_{4}\right)
\end{aligned}
$$

The alphabet

Hexa-box alphabet [Abreu, Ita, Page, Tschernow '21], no new letters from DP

$$
A=\sum_{i=1}^{204} \mathrm{~d} \log W_{i} A_{i}
$$

c.f. 31 letters, 1 square root for massless!

Algebraic letters, odd under root sign flip

$$
\text { e.g. } \quad W_{118}=\frac{p_{1}^{2}-s_{23}+s_{45}+\sqrt{\Delta_{3}^{(1)}}}{p_{1}^{2}-s_{23}+s_{45}-\sqrt{\Delta_{3}^{(1)}}}
$$

$\begin{array}{cc}\text { Degree } & \text { Letters } \\$\cline { 1 - 2 } linear \& 27
 quadratic \& 66
 qubic \& 24\end{array}$\} 117$ rational

Function basis

Basis construction

[Chicherin, VS, Zoia '21] (see also [Chicherin, VS '20] [Badger. Hartanto, Zoia '21])

Canonical DE

$$
\mathrm{d} \vec{g}=\epsilon A \vec{g}
$$

$$
A=\sum_{i} \mathrm{~d} \log W_{i}(\mathbf{s}) A_{i}
$$

Initial conditions
physics, limits, PSLQ

Vector subspace, weight-graded

$$
\mathbf{G}=\bigoplus_{w} \mathbf{G}^{(w)}
$$

+ shuffle product
$\mathbf{G}^{w_{1}} \times \mathbf{G}^{\left(w_{2}\right)} \mapsto \mathbf{G}^{\left(w_{1}+w_{2}\right)}$
$\left[W_{1}, \ldots, W_{r}\right]_{\gamma}\left[W_{r+1}, \ldots, W_{n}\right]_{\gamma}$

$$
=\sum_{\mathrm{i} \in \text { shuffles }}\left[W_{i_{1}}, \ldots, W_{i_{n}}\right]_{\gamma}
$$

Chen iterated integrals [Chen '77]

$$
\begin{aligned}
& {\left[W_{1}, \ldots, W_{n}\right]_{\gamma}=} \\
& \int_{0}^{1} \mathrm{~d} \log W_{n}\left(t_{n}\right) \ldots \int_{0}^{t_{2}} \overbrace{\mathrm{~d} \log W_{n}\left(t_{1}\right)}^{\gamma}
\end{aligned}
$$

Basis in $\mathbf{G}^{(w)}$ mod products
\checkmark complete
\checkmark non-redundant

Initial values

Function basis construction requires algebraic relations between initial values $\vec{g}\left(X_{0}\right)$

Previously

Serious bottleneck [Chicherin, VS, Zoia '21]

- Rely on MPL expressions [Canko, Papadopoulos, Syrrakos '20] to calculate $\vec{g}\left(X_{0}\right)$ to $\mathcal{O}(3000)$ digits
- Pushing the limits of most advanced PSLQ algorithms [Bailey, Broadhurst '01]
[Bailey, Borwein, Kimberley, Ladd '17] (~ 400 constants with ~ 2000 digits)

New approach

1. Construct symbol-level function basis, i.e. setting $\vec{g}^{(w)}\left(X_{0}\right)$ with $w>0$
2. Use their definitions trough MI components to upgrade to iterated integrals
3. Presume that MI expression are polynomials in basis functions and $\langle\mathrm{i} \pi\rangle \oplus\left\langle\pi^{2}\right\rangle \oplus\left\langle\mathrm{i} \pi^{3}, \zeta_{3}\right\rangle \oplus\left\langle\pi^{4}, \mathrm{i} \pi \zeta_{3}\right\rangle \Longrightarrow$ derive constraints
4. Match to numerical evaluation from AMFlow to validate and fix remaining rational numbers
\checkmark Precision for $\vec{g}\left(X_{0}\right)$ need not exceed final target precision
\checkmark PSLQ fit just one rational number at a time

Non-analyticity within physical region

Consider iterated integral along $\gamma: t \in[0,1] \rightarrow \mathcal{P}_{\text {phys }}$, and $W_{i}\left(t^{\star}\right)=0$,

$$
\int_{\gamma} \mathrm{d} \log W_{i} h=\int_{\gamma} \frac{\mathrm{d} W_{i}}{W_{i}} h \xrightarrow{t \rightarrow t^{\star}} \frac{W^{\prime}(t)}{t-t^{\star}}\left(h^{(0)}+h^{(1)}\left(t-t^{\star}\right)+\mathcal{O}\left(\left(t-t^{\star}\right)^{2}\right)\right)
$$

Planar scattering

Only linear or quadratic letters vanish in $\mathcal{P}_{\text {phys }}$, poles always canceled, i.e. $h^{(0)}=0$

Non-analyticity within physical region

Consider iterated integral along $\gamma: t \in[0,1] \rightarrow \mathcal{P}_{\text {phys }}$, and $W_{i}\left(t^{\star}\right)=0$,

$$
\int_{\gamma} \mathrm{d} \log W_{i} h=\int_{\gamma} \frac{\mathrm{d} W_{i}}{W_{i}} h \xrightarrow{t \rightarrow t^{\star}} \frac{W^{\prime}(t)}{t-t^{\star}}\left(h^{(0)}+h^{(1)}\left(t-t^{\star}\right)+\mathcal{O}\left(\left(t-t^{\star}\right)^{2}\right)\right)
$$

Planar scattering

Only linear or quadratic letters vanish in $\mathcal{P}_{\text {phys }}$, poles always canceled, i.e. $h^{(0)}=0$

New feature of nonplanar scattering

Square roots of quartic polynomials $\sqrt{\Sigma_{5}}$ can vanish in $\mathcal{P}_{\text {phys }} \Longrightarrow$ new types of divergences

1. Integrable square root: $\mathrm{d} \log \frac{a+\sqrt{\Sigma_{5}}}{a-\sqrt{\Sigma_{5}}} \xrightarrow{\Sigma_{5} \rightarrow 0} \frac{\mathrm{~d} \Sigma_{5}}{a \sqrt{\Sigma_{5}}} \xrightarrow{t \rightarrow t^{\star}} \frac{C}{\sqrt{t-t^{\star}}}+\ldots$
2. Uncompensated poles: $\mathrm{d} \log \sqrt{\Sigma_{5}} \xrightarrow{\Sigma_{5} \rightarrow 0} \frac{\mathrm{~d} \Sigma_{5}}{2 \Sigma_{5}} \xrightarrow{t \rightarrow t^{\star}} \frac{C}{t-t^{\star}}+\ldots \Longrightarrow \log$ divergence!

- Choose basis functions to localize non-analytic behavior
- Expectation: functions with type 2 divergence cancel out in physical results
- Numerical evaluation more challenging

Basis structure

Weight	$\mathrm{P} \cup \mathrm{PB}$	+HB	+DP	Total
1	11	0	0	11
2	25	10	0	35
3	145	72	0	217
4	675	305	48	1028
\#MIs	1361	542	345	2248

> Permutation closed
> $\sigma\left(f_{i}^{(w)}\right) \rightarrow \sum_{j} c_{i j} f_{j}^{(w)}+\ldots$

Basis structure

Weight	$\mathrm{P} \cup \mathrm{PB}$	+HB	+DP	Total
1	11	0	0	11
2	25	10	0	35
3	145	72	0	217
4	675	305	48	1028
\#MIs	1361	542	345	2248

Weight 3
$d \log \sqrt{\Sigma_{5}^{(i)}}$

$$
\begin{aligned}
& \text { Permutation closed } \\
& \sigma\left(f_{i}^{(w)}\right) \rightarrow \sum_{j} c_{i j} f_{j}^{(w)}+\ldots
\end{aligned}
$$

$\mathrm{d} \log \sqrt{\Delta_{5}} \begin{aligned} & \text { likely cancel in finite remainders } \\ & \text { [Chicherin, Henn, Papathanasiou '20] }\end{aligned}$
$\mathrm{d} \log \sqrt{\Sigma_{5}^{(i)}}$ also cancel?
7 functions diverge at $\Sigma_{5}^{(3)}=0$

$$
1, \ldots, 145,146, \ldots, 207,208, \ldots, 213, \underbrace{214, \ldots, 217}_{d \log \sqrt{\Delta_{5}}}
$$

Weight 4

$$
1, \ldots, 112,113,114, \ldots, 664,665, \ldots, 675
$$

$$
\square \mathrm{d} \log \sqrt{\Delta_{5}}
$$

Numerical evaluation

Numerical evaluation

Weights 1 and 2

Well-defined combinations of \log , Li_{2} functions

$$
f_{13}^{(2)}=\operatorname{Li}_{2}\left(1-\frac{s_{15}-s_{23}-s_{34}}{s_{15}},\right.
$$

Weights 3 and 4

$$
\begin{aligned}
f_{i}^{(3)} & =\int_{0}^{1} \sum_{j} \frac{\partial \log W_{j}(t)}{\partial t} h_{i, j}^{(2)} \mathrm{d} t \\
f_{i}^{(4)} & =\int_{0}^{1} \sum_{j, k} \frac{\partial \log W_{j}(t)}{\partial t} \log \frac{W_{k}(1)}{W_{k}(t)} h_{i, j k}^{(2)} \mathrm{d} t
\end{aligned}
$$

- Numerical one-fold integration [Caron-Huot, Henn '14] of analytic integrands \Longrightarrow exponential convergence [Takahasi, Mori '73]
- No crossing of physical thresholds \Longrightarrow no analytic continuation needed
- Dedicated series expansions around (spurious) singularities

Numerical performance

- Sample over physical phase space for NLO Wjj production at the LHC
- Evaluate all functions on each point, plot the worst accuracy per point
- Timing for all functions on one CPU
- Worse stability for functions with $\mathrm{d} \log \sqrt{\Sigma_{5}}$ (hopefully irrelevant!)

Conclusions

Conclusions \& Outlook

Conclusions

- A complete set of special functions describing double virtual corrections for two-loop five-point one-mass processes is available.
- Enables application of modern techniques for analytic calculation of two-loop amplitudes.
- Ready for cross section calculations.

Outlook

- Paper to appear soon.
- Possibility of calculating NNLO QCD corrections for a large class of $2 \rightarrow 3$ processes is open. Hopefully exciting phenomenology in near future!
- Important contribution towards $\mathrm{N}^{3} \mathrm{LO}$ QCD corrections for $V j, V \gamma$ production.

Acknowledgments

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme, Novel structures in scattering amplitudes (grant agreement No. 725110).

This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement 101019620 (ERC Advanced Grant TOPUP).

European Research Council
Established by the European Commission

Numerical performance: conservative precision rescue

