Determination of the Weak Mixing Angle

Rhys Taus,

On behalf of the ATLAS, CMS, and LHCb collaborations

University of Rochester

QCD@LHC2022
What is the weak mixing angle

- Key parameter in the electroweak sector of the SM
 \[\sin^2(\theta_w) = 1 - \frac{m_w^2}{m_Z^2}, \]
- We can also define an effective leptonic mixing angle which at leading order
 \[k_\ell \sin^2(\theta_w) = \sin^2(\theta_{\text{lep}}^{\text{eff}}) = \frac{1}{4|Q|} \left(1 - \frac{g_\nu}{g_a} \right) \]
- Electroweak radiative corrections in \(k_\ell \) are accurately calculated in standard model
- Precise \(\sin^2(\theta_{\text{lep}}^{\text{eff}}) \) measurement can probe new physics contributions to \(m_W \) (an indirect \(m_W \) measurement) and \(k_\ell \)
Current Status

- Current precision driven by LEP/SLD
- Hadron collider measurements are becoming competitive

![Graph showing the current status of the weak mixing angle with data points for various experiments.](image-url)

ATLAS-CONF-2018-037
The 2 most precise measurements LEP and SLD measurements disagree by $\sim 3\sigma$. Could be hint of non standard model processes

The recent W mass measurement from CDF II has tensions with other measurements and disagrees with the SM at an order of 7σ
Measuring $\sin^2(\theta_{\text{eff}}^{\text{lep}})$ at the LHC

- The full differential cross section in leading order

$$\frac{d\sigma}{dp_T^\ell\ell dy^\ell\ell dm^\ell\ell d\cos \theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^\ell\ell dy^\ell\ell dm^\ell\ell} \left\{ (1 + \cos^2 \theta) + \frac{1}{2} A_0 (1 - 3 \cos^2 \theta) + A_1 \sin 2\theta \cos \phi \\
+ \frac{1}{2} A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta \\
+ A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right\}.$$

- At first order, only the annihilation $q\bar{q} \rightarrow Z$ is present

$$\frac{d\sigma}{d(\cos \theta^*)} \propto 1 + \cos^2 \theta^* + A_4 \cos \theta^*,$$

ATLAS-CONF-2018-037
CMS, arxiv: 1806.00863
Measuring $\sin^2(\theta_{\text{lep}}^{\text{eff}})$ at the LHC

- The mixing of vector and axial vector couplings creates a forwards backwards asymmetry in the decay of Z bosons to dilepton pairs $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \ell\bar{\ell}$

- Measure this asymmetry Collins-Soper rest frame (CS frame)

$$A_{FB} = \frac{3}{8} A_4 = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- The Z-axis of the CS frame is along the direction of the $q\bar{q}$ collision

- Z boson rapidity defines the quark direction

$$\cos \theta^* = \frac{2(P_1^+ P_2^1 - P_1^- P_2^2)}{\sqrt{m_{ll}^2(m_{ll}^2 + p_{T,\ell}^2)}} \frac{p_{Z,\ell}}{|p_{Z,\ell}|}$$

CMS, arxiv: 1806.00863
Measuring $\sin^2(\theta_{\text{lep}}^{\text{eff}})$ at the LHC

- A_{FB} increases with the rapidity of the Z boson, Y_Z
- Only valence quarks contribute to A_{FB}
- At higher Y_Z the high X parton is likely to be a valence quark and the low X parton the antiquark

CMS, arxiv: 1806.00863
Weighted A_{FB}

- Weight A_{FB} by $\cos \theta^*$
- Weighted A_{FB} cancels uncertainties that come from efficiencies and acceptance

CMS, arxiv: 1806.00863
Extracting $\sin^2(\theta_{\text{lep}}^{\text{eff}})$

- A_{FB} has a high dependence on mass, this comes from interference of Z with virtual photon

- By creating templates by varying the value of $\sin^2(\theta_w)$ we can test which value that the data agrees with

CMS, arxiv: 1806.00863
PDFs

- Measurement of $\sin^2(\theta^\text{lep}_{\text{eff}})$ has strong dependence on PDFs
- Less effect in high rapidity regions
- ATLAS and CMS constrain PDFs in situ

CMS Weighted PDF

18.8 fb$^{-1}$ (8 TeV)

<table>
<thead>
<tr>
<th>CT10</th>
<th>NNPDF3.0 (100)</th>
<th>MMHT2014</th>
<th>CT14</th>
<th>NNPDF3.0 (1000)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$\sin^2\theta^\text{eff}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.229</td>
</tr>
</tbody>
</table>

CMS, arxiv: 1806.00863
Combination of 7TeV (1 fb$^{-1}$) and 8TeV (2 fb$^{-1}$) data

Measurement uses the dimuon channel

High rapidity measurement $2.0 < \eta < 4.5$ with raw A_{FB}

\[
\sin^2(\theta_{lep}^{eff}) = 0.23142 \pm 0.0011
\]

The error breaks down as ±0.00073 (statistical), ±0.00052 (systematic) and ±0.00056 (theoretical)
Measurement made on 8TeV data

18.8 fb\(^{-1}\) in the dimuon channel and 19.6 fb\(^{-1}\) in the dielectron channel

Uses weighted \(A_{fb}\) and constrains PDFs using the high mass region

\[
\sin^2(\theta^\text{lep}_{\text{eff}}) = 0.23101 \pm 0.00053
\]

The error breaks down as \(\pm 0.00036\) (stat) \(\pm 0.00018\) (syst) \(\pm 0.00016\) (theo) \(\pm 0.00031\) (parton distributions in proton)
- Measurement made on 8TeV data with 20.2 fb$^{-1}$
- 6 million electron pairs, 7.5 million muon pairs
- Using events with a forward electron extends the rapidity coverage to 3.6
- 1.5 million electron pairs with a forward electron (reconstructed from calorimeter, no tracker)
Extracts weak mixing angle from $A_4(m, y)$ instead of A_{FB}

$\sin^2(\theta_{lep}^{\text{eff}}) = 0.23101 \pm 0.00036$

The error breaks down as ± 0.00021 (stat) ± 0.00024 (PDF) ± 0.00016 (syst.)
LHC EW working group activities

- Tuned comparison/benchmarking of NLO and higher order weak and QED corrections, including FSR, ISR and IFI
- Main focus on $\frac{d\sigma}{dM(\ell\ell)}$ and A_{FB}
- Studying various electroweak input schemes, in particular new $\sin(\theta_W)$ EW input scheme, which is needed for this measurement
- Preparatory studies in view of Run2 and future combinations

$A_4(m_{\ell\ell})$ for $y_{\ell\ell} < 3.6$

$A_4(y_{\ell\ell})$ for $86 < m_{\ell\ell} < 96$
Future measurements

- CMS Hi-lumi extended acceptance projections (CMS-PAS-FTR-17-001)
- ATLAS projections (ATL-PHYS-PUB-2018-037)
- LHCb projections (LHCb-PUB-2018-013)
- The statistical sensitivity can be expected to improve by up to a factor of $\sqrt{2}$
- Increased statistics will also allow for the analysis to be done as a function of rapidity
- Expect uncertainties to be competitive with LEP+SLD at $L > 100 fb^{-1}$
- Extension of tracker will increase acceptance to Z rapididities up to 2.8
- Studies in the muon channel predict to have uncertainties on PDFs competitive with LEP+SLD at $L > 300 fb^{-1}$
- Extension of inner tracker from $|\eta| \leq 2.4$ to $|\eta| \leq 4.0$
- Projections for $L > 300 fb^{-1}$ for different PDF scenarios
Conclusions

- Important probe to test the SM in the electroweak sector and to search indirectly for new physics
- Run2 uncertainties expected to be competitive with LEP/SLD
- The LHC (ATLAS, CMS, LHCb) has promising plans for future measurements, and for combinations of these measurements

University of Rochester DOE Grant Number
Research supported by the U.S. Department of Energy under grant number DE-SC0008475.