Joint theory and experimental session on quarkonia at the LHC

Valeriia Zhovkovska

QCD@LHC
28 Nov – 2 Dec 2022, IJCLab (Orsay, France)
on behalf of the ALICE, ATLAS, CMS and LHCb Collaborations
Quarkonium: What and Where from?

- **What?**
 - a bound state of two heavy quarks (c or b)
- **Where from?**
 - prompt hadroproduction
 - decays of higher resonances (feed-down)
 - production in b-hadron decays / non-prompt (charmonium only)

Joint TH and EXP session on quarkonia at the LHC
Quarkonium production: Current status

- **Existing challenges**: *
 - simultaneous description of J/ψ production and polarization – “polarization puzzle”
 - simultaneous description of η_c and J/ψ together with J/ψ photoproduction - “HQSS puzzle”
 - negative contribution in the cross-section
 - tension with $J/\psi+Z$ production
 - CEM does not describe P-waves production
 - …

 *Please, check WG4 sessions for more details

- **New sources of input**: *
 - Study of η_q and χ_q states
 - Associated quarkonia production
 - Production in heavy-ion collisions
 - Non-conventional quarkonium
 - …

Joint TH and EXP session on quarkonia at the LHC

© talk by Maxim
No consensus on the quarkonium production mechanism

Nearly all approaches assume factorisation between the $Q\bar{Q}$ formation and its hadronization into a meson.

Three common models with the different description of the hadronization:

- Colour evaporation model (CEM): application of quark-hadron duality; only the invariant mass matters;
- Colour-singlet model (CS): intermediate $Q\bar{Q}$ state is colourless and has the same J^{PC} as the final-state quarkonium;
- Colour-octet model (CO) (encapsulated in NRQCD): all viable colours and J^{PC} allowed for the intermediate $Q\bar{Q}$ state;

NRQCD is found to be the most used, because it is based on an EFT and can be improved systematically.

"Quarkonium production: Models"

© talk by J.-P. Lansberg

Joint TH and EXP session on quarkonia at the LHC
NRQCD: Theory vs Experiment

- Two scales of production: hard process of \(Q\bar{Q} \) formation and soft scale hadronization of \(Q\bar{Q} \)
- **Factorization?**
 \[d\sigma_{A+B\rightarrow H+X} = \sum_n d\sigma_{A+B\rightarrow Q\bar{Q}(n)+X} \times <\Omega^H(n)> \]
 - **Short distance**: perturbative cross-sections + pdf for the production of a \(Q\bar{Q} \) pair
 - **Long distance matrix elements (LDMEs)**: non-perturbative part
 - Both CS and CO states are allowed with varying probabilities
 => LDMEs from experimental data: \(p_T \)-differential production, feed-down...

- **Universality?**
 - same LDMEs for different \(\sqrt{s} \), prompt production and production in b-decays
 => production at all possible \(\sqrt{s} \), associated production, separate prompt and b-decays...

- **Heavy-Quark Spin-Symmetry?**
 - links between CS and CO LDMEs of different quarkonium states
 => simultaneous studies of several states...

\[
\begin{align*}
\left< \mathcal{O}_{1,8}^c \left(^1 S_0 \right) \right> &= \frac{1}{3} \left< \mathcal{O}_{1,8}^{J/\psi} \left(^3 S_1 \right) \right> \\
\left< \mathcal{O}_{8}^c \left(^3 S_1 \right) \right> &= \left< \mathcal{O}_{8}^{J/\psi} \left(^1 S_0 \right) \right> \\
\left< \mathcal{O}_{8}^c \left(^1 P_1 \right) \right> &= 3 \left< \mathcal{O}_{8}^{J/\psi} \left(^3 P_0 \right) \right>
\end{align*}
\]

Joint TH and EXP session on quarkonia at the LHC
LHC detectors hunting for quarkonium

• ATLAS and CMS: mid-rapidity region, with muons in final state

• LHCb: forward-rapidity region, with muons and hadrons in final state

• ALICE: both mid- and forward-rapidity regions, with muons and electrons in final state

Experiments provide complementary measurements
Final states:
- hadrons or γγ
- μ⁺μ⁻/e⁺e⁻ or hadrons
- ³S₁γ, ³S₁π⁺π⁻ or hadrons
- ¹S₀γ or hadrons

Existing measurements:
- ηᶜ production
- ηᶜ(2S) production in b-decays
- J/ψ, ψ(2S) and Y(nS) production and polarization
- J/ψ+J/ψ/jet/Z/W⁺, J/ψ+J/ψ+J/ψ and Y(1S)+Y(1S) production
- χᶜ production and polarization
- χᵇ production

Hadronic final states allow to study different quarkonium states simultaneously
J/ψ: Differential production cross-sections

- **ATLAS** prompt and from-b @ 13 TeV
 \[60 < p_T < 360 \text{ GeV/c}, |y| < 2.0 \]

- Data compared with lower-\(p_T\) CMS results

- **LHCb** prompt and from-b @ 5.02 TeV
 \[0 < p_T < 20 \text{ GeV/c}, 2.5 < y < 4.0 \]

- **ALICE** prompt and from-b @ 5.02 and 13 TeV
 \[p_T > 2(1) \text{ GeV/c}, |y| < 0.9 \]

- Reasonable agreement between NRQCD and data

- ICEM shows good agreement with data

- Good agreement between data and FONLL at low-\(p_T\), with theory exceeding prediction at high-\(p_T\)

Single J/ψ hadroproduction has been studied in all possible configurations

Joint TH and EXP session on quarkonia at the LHC
J/ψ: Polarization

polarization @ 8 TeV
2 < p_T < 15 GeV/c, 2.5 < y < 4.0

ALICE

• Measured via angular distributions of muons in quarkonium rest frame
• Two different polarization frames are used: Helicity and Collins- Soper
• Good agreement between ALICE and LHCb measurements at √s = 7 TeV
• No significant J/ψ polarization observed
• Tension between existing NRQCD prediction and data
• Better agreement for NRQCD+CGC [JHEP 1812(2018)057]; however tensions still present

Joint TH and EXP session on quarkonia at the LHC
ψ(2S): Differential production cross-sections

- **ATLAS**
 - Prompt and from-b @ 13 TeV
 - $60 < p_T < 360$ GeV/c, $|y| < 20$
 - Prompt and from-b @ 7 and 13 TeV
 - $p_T < 20$ GeV/c, $2.0 < y < 4.5$
 - Inclusive @ 5.02 TeV
 - $p_T < 12$ GeV/c, $25 < y < 4.0$

- Reasonable agreement between NRQCD and data in a limited p_T range ($p_T > 7$ GeV/c)

- Another mechanism is needed at low-p_T

- ICEM shows good agreement with data

- Good agreement with FONLL for production in b-decays for all experiments

Same situation as for single J/ψ hadroproduction

Joint TH and EXP session on quarkonia at the LHC
Y(nS): Differential production cross-sections

- p_T- and y-differential cross-sections @ 5.02 TeV
 $p_T < 20 \text{ GeV}/c, 2.0 < y < 4.5$

- p_T- and y-differential cross-sections @ 5.02 TeV
 $p_T < 15 \text{ GeV}/c, 2.5 < y < 4.0$

- Ratios computed between different states and different energies

- Reasonable agreement between NRQCD and data

- Both ICEM and CEM describe data within uncertainties

Same situation as for single J/ψ hadroproduction

Joint TH and EXP session on quarkonia at the LHC
\(\eta_c(1S) \): Differential production cross-section

- **Relative** \(\eta_c/J/\psi \) and **absolute** \(\eta_c \)
 \(p_T \)-differential production **cross-sections** @ 13 TeV

- \(\eta_c(1S) \) production:
 - \(6.5 < p_T < 14.0 \text{ GeV}/c, 2.0 < y < 4.5 \)
 - \(\sigma_{\eta_c}^{\text{prompt}} = 1.26 \pm 0.11_{\text{stat}} \pm 0.08_{\text{syst}} \pm 0.14_{/\psi} \mu b \)
 - \(\mathcal{B}_{b \to \eta_c X} = (5.51 \pm 0.32_{\text{stat}} \pm 0.29_{\text{syst}} \pm 0.77_{/\psi}) \times 10^{-3} \)

- Results may **provide important link** between \(J/\psi \) production and **polarization**

- \(\eta_c(1S) \) production can be described by **CS contribution** only; measurement in extended \(p_T \) is required: **larger slope** would indicate possible **CO contribution**

Interpretation of \(\eta_c(2S)/\psi(2S) \) much cleaner than for \(\eta_c(1S)/J/\psi \) due to absence of feed-down
$\eta_c(2S)$: Production in b-decays

- **Production @7 and 8 TeV via decays to $\phi\phi$**: True $\phi\phi$ combinations extracted using 2D fit technique.

- **First measurement of $\eta_c(2S)$ production in b-decays**: First evidence for $\eta_c(2S) \rightarrow \phi\phi$

$$\frac{B(b \rightarrow \eta_c(2S)X)}{B(b \rightarrow \eta_c(1S)X)} \times \frac{B(\eta_c(2S) \rightarrow \phi\phi)}{B(\eta_c(1S) \rightarrow \phi\phi)} = 0.040 \pm 0.011 \pm 0.004$$

Important to measure $\eta_c(2S)$ hadroproduction:
- Theory prediction ⇒
- Dedicated LHCb trigger in 2018

Joint TH and EXP session on quarkonia at the LHC
χ_c: Production in b-decays

- **Production** @7 and 8 TeV via **decays to $\phi\phi$**; true $\phi\phi$ combinations extracted using 2D fit technique

- **First measurement of χ_{c0} production in b-decays:**
 \[B(b \to \chi_{c0}X) = (3.02 \pm 0.47_{\text{stat}} \pm 0.23_{\text{syst}} \pm 0.94_B) \times 10^{-3} \]

- **Most precise measurements** of χ_{c1} and χ_{c2} production in b-decays, consistent with B-factories

- **Promising channel to study χ_c polarization** [Phys.Rev.D 103 (2021) 9, 096006]

Joint TH and EXP session on quarkonia at the LHC
\(\chi_{c1,2} \): Production using \(\chi_{c1,2} \rightarrow J/\psi \gamma \)

- Relative \(\chi_{c2} / \chi_{c1} \) prompt \(p_T \)-differential production cross-section:

\[
R_p = \frac{\sigma(pp \rightarrow \chi_{c2}X) \times \mathcal{B}(\chi_{c2} \rightarrow J/\psi \gamma)}{\sigma(pp \rightarrow \chi_{c1}X) \times \mathcal{B}(\chi_{c1} \rightarrow J/\psi \gamma)}
\]

- Relative \(\chi_{c2} / \chi_{c1} \) and \(\chi_{c0} / \chi_{c2} \) prompt \(p_T \)-differential production cross-section

- \(\chi_{c0} \) relative production measured with 4\(\sigma \) significance:

\[
\frac{\sigma_{\chi_{c0}}}{\sigma_{\chi_{c2}}} = 1.19 \pm 0.27_{\text{stat}} \pm 0.29_{\text{syst}} \pm 0.16_{\text{\(p_T\) model}} \pm 0.09_{\mathcal{B}}
\]

- \(\chi_{c2} \) production is enhanced at low-\(p_T \)

Joint TH and EXP session on quarkonia at the LHC
\(\chi_{c1,2}: \text{Production using } \chi_{c1,2} \rightarrow J/\psi \)

- **ATLAS** \(\chi_{c1} \) and \(\chi_{c2} \) \(p_T \)-differential production cross-section @ 7 TeV

- Prompt and b-decays production measured separately

- Estimated \(J/\psi \) fraction from \(\chi_c \) decays: result in agreement with LHCb measurement [PLB 714 (2012) 215]

- Results compared with theoretical predictions: good agreement with NRQCD
$\chi_{c1,2}$: Production using $\chi_{c1,2} \rightarrow J/\psi\gamma$

- Combined study of χ_c states

- NRQCD fit for production cross-section
 - absolute \Rightarrow ATLAS
 - relative \Rightarrow LHCb, CMS

- CO LDME for χ_c is obtained from fit to data

- More precise when looking for ratio

Small p_T region has to be explored
$\chi_{c1,2}$: Production using $\chi_{c1,2} \rightarrow J/\psi \mu^+\mu^-$

- First observation of $\chi_{c1,2} \rightarrow J/\psi \mu^+\mu^-$ decay modes
- Extremely clean signals
- $\chi_{c1,2}$ resonance parameters measured with world average precision

<table>
<thead>
<tr>
<th>Quantity</th>
<th>LHCb measurement</th>
<th>Best previous measurement</th>
<th>World average</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m(\chi_{c1})$</td>
<td>3510.71 ± 0.10</td>
<td>3510.72 ± 0.05</td>
<td>3510.66 ± 0.07</td>
</tr>
<tr>
<td>$m(\chi_{c2})$</td>
<td>3556.10 ± 0.13</td>
<td>3556.16 ± 0.12</td>
<td>3556.20 ± 0.09</td>
</tr>
<tr>
<td>$\Gamma(\chi_{c2})$</td>
<td>2.10 ± 0.20</td>
<td>1.92 ± 0.19</td>
<td>1.93 ± 0.11</td>
</tr>
</tbody>
</table>

- New channel for production measurement
- Similar studies can be done at CMS?

Promising channel for χ_c hadroproduction at low-p_T
χ_{c1} vs χ_{c2}: Polarization

- First measurement of P-wave quarkonium polarization @8 TeV χ_{c2}/χ_{c1} ratios as a function of $|\cos\theta^{HX}|$ and ϕ^{HX}

- Unpolarized scenario and large part of the physically allowed region (red rectangle) excluded at 99.7% CL

→ at least one state is strongly polarized
The production of two particles in the same pp collision can be due to:

Single-Parton Scattering (SPS):
- the two particles are produced a single interaction of two partons
- expected to be “back-to-back” in transverse plane

Double-Parton Scattering (DPS):
- simultaneous interaction of two pairs of partons, assumed to be uncorrelated
- DPS “Pocket formula”:

\[
\sigma_{DPS}^{pp\to\psi_1\psi_2} = \frac{m}{2} \frac{\sigma_{SPS}^{pp\to\psi_1X} \sigma_{SPS}^{pp\to\psi_2X}}{\sigma_{eff,DPS}}
\]

- **Di-J/ψ production:**
 - expected small SPS CO contribution
 - DPS contribution is important at large J/ψ Δγ
 - feed-down contribution depends on the production mechanism
Di-J/ψ: Production

- Di-J/ψ production was measured in different kinematical regions

\[\sigma_{\text{eff}} = 6.3 \pm 1.6_{\text{stat}} \pm 1.0_{\text{syst}} \text{ mb} \]

- Measurement shows:
 \[p_T > 8.5 \text{ GeV}/c, |y| < 2.1 \]

- Measurement shows:
 \[p_T < 10 \text{ GeV}/c, 2.0 < y < 4.5 \]

\[\sigma_{\text{eff}} \text{ from } 8.8 \pm 5.6 \text{ mb to } 12.5 \pm 4.1 \text{ mb} \]

- LHCb result shows lower \(\sigma_{\text{eff}} \) than the other LHCb measurements, but higher than ATLAS and CMS results

- An improvement in the precision for SPS predictions is needed for a better discrimination between theory approaches

- Feed-down contribution can amount up to 40% of SPS contribution and has to be accounted for
Di-J/ψ: Search for resonances

- **First observation of fully heavy tetraquark candidate X(6900)**

- **Observes similar structure + two more candidates X(6600) and X(7300)**

- **Threshold structure with a few possible interpretations:**
 - One BW, combination of two BWs, feed-down...

- **Additional study together with spin-parity measurement required to explain nature of threshold structure**

More studies of J/ψ+quarkonium will arrive soon

Joint TH and EXP session on quarkonia at the LHC
Di-Y(1S): Production and search for resonances

- **DPS process** can provide information on partons p_T, their correlations inside proton and can help understanding various backgrounds.

- **Y(1S) pair production for unpolarized case**

 $$\sigma_{Y(1S)Y(1S)} = 79 \pm 11_{stat} \pm 6_{syst} \pm 3_{\#} pb, \ |y|<2.0$$

- Charging λ_θ in range $[-1, +1]$ production varies from -60% to $+25\%$

- First measurement of DPS contribution to $\sigma_{Y(1S)Y(1S)}$

 $$f_{DPS} = (39 \pm 14)\%$$

- **No excess** of events compatible with signal is observed in 4-μ invariant mass spectrum

Joint TH and EXP session on quarkonia at the LHC
First observation of triple-J/ψ production

Cross-section:

$$\sigma_{3J/\psi} = 272^{+141}_{-101} \text{ stat} \pm 16 \text{ syst } fb, \ |y_{J/\psi}| < 2.4$$

Contributions of DPS and TPS:

$$f_{DPS} \sim 76\% \text{ and } f_{TPS} \sim 20\%$$

Measured $\sigma_{eff} = 2.7^{+1.4}_{-1.0 \text{ stat}}^{+1.5}_{-1.0 \text{ syst}} mb$ is consistent with di-J/ψ results, but lower than jet/W/Z results
Prospects

• Single quarkonium production:
 • $\eta_c(2S)$, h_c and $\eta_b(1S)$ production
 • X_c production at low-p_T
 • simultaneous study of $\psi(2S)$ and $\eta_c(2S)$
 ➢ no feed-down from higher stated, clean interpretation
 • decays to $\Lambda\Lambda$, $\Lambda^*\Lambda^*$, $\Sigma\Sigma$, $\Xi\Xi$ final states
 ➢ access to new quarkonium states

• Double quarkonium production:
 • $J/\psi+\eta_c$
 ➢ NRQCD predicts suppressed yield w.r.t. $J/\psi+J/\psi$
 • $J/\psi+Y$
 ➢ dominant SPS CO
 • $J/\psi+\psi(2S)$, $\psi(2S)+\psi(2S)$
 ➢ will help to understand feed-down contribution
Summary

• Recent LHC results on quarkonium production will be useful input to understand quarkonium production mechanism in pp and heavy-ion collisions

• Comprehensive quarkonium production model is missing
 • new inputs are necessary to improve understanding: associated production, production of η_c and h_c ...

• Upcoming interesting results on single and associated quarkonium production
 • would it be possible to have new theory constraints?
 • new models?

Thanks for your attention!
χ_b resonances
χ_b PRODUCTION in LHCb at $\sqrt{s}=7$ and 8 TeV

- Search for $\chi_b(nP)$ using decay to $\Upsilon(nS)\gamma$
 \[R_{\Upsilon(nS)} = \frac{N_{\chi_b(mP)}}{N_{\Upsilon(nS)}} \times \frac{\varepsilon_{\Upsilon(nS)}}{\varepsilon_{\chi_b(mP)}} \]
- Invariant mass fit to extract yields
 - Fraction $R_{\Upsilon(nS)}$ measured in bins of p_T
- $\chi_b(3S) \to \Upsilon(3S)\gamma$ observed for the first time

Joint TH and EXP session on quarkonia at the LHC
χ_b PRODUCTION in LHCb at $\sqrt{s}=7$ and 8 TeV

- **First measurement of $\chi_b(1P)/\chi_b(1P)$ production** using decay to $Y(1S)\gamma$

 $$\frac{\sigma_{\chi_b(1P)}}{\sigma_{\chi_b(1P)}} = \frac{N_{\chi_b(1P)}}{N_{\chi_b(1P)}} \times \frac{\varepsilon_{\chi_b(1P)}}{\varepsilon_{\chi_b(1P)}} \times \frac{B(\chi_b(1P)\rightarrow Y(1S)\gamma)}{B(\chi_b(1P)\rightarrow Y(1S)\gamma)}$$

- **Results have reasonable agreement with CMS results and LHCb-based LO NRQCD prediction** \([\textbf{JHEP} \, 10 \, (2013) \, 115]\) at high-p_T
χ_b PRODUCTION in CMS at $\sqrt{s}=8$ TeV

- Precise measurement of $\chi_b^{2}(1P)/\chi_b^{1}(1P)$ production cross-section in complementary region to LHCb: $5 < p_T^\gamma < 25$ GeV/c, $|y| < 1.5$

- χ_b relative production in integrated p_T-range:
 \[\frac{\sigma_{\chi_b^{2}}}{\sigma_{\chi_b^{1}}} = 0.85 \pm 0.07_{\text{stat}}{\text{syst}} \pm 0.08_{\text{B}} \]

- Ratio does not show significant dependence on $Y(1S) p_T$

- $>2\sigma$ discrepancy with NRQCD prediction at high-p_T

Joint TH and EXP session on quarkonia at the LHC
Di-J/ψ and resonances
Di-J/ψ production and search for resonances

- **First observation of fully heavy tetraquark candidate**
- Threshold structure with a few possible interpretations:
 - One BW, combination of two BWs, feed-down...
 - Additional study together with spin-parity measurement required to explain nature of threshold structure
- **Peak at 6.9 GeV: X(6900), consistent with BW structure**
 - Without interference:
 \[
m_{X(6900)} = 6905 \pm 11_{\text{stat}} \pm 7_{\text{syst}} \text{ MeV/c}^2
 \]
 \[
 \Gamma_{X(6900)} = 80 \pm 19_{\text{stat}} \pm 33_{\text{syst}} \text{ MeV/c}^2
 \]
 - With interference:
 \[
m_{X(6900)} = 6886 \pm 11_{\text{stat}} \pm 11_{\text{syst}} \text{ MeV/c}^2
 \]
 \[
 \Gamma_{X(6900)} = 168 \pm 33_{\text{stat}} \pm 69_{\text{syst}} \text{ MeV/c}^2
 \]
Di-J/ψ production and search for resonances

- Three tetraquark candidates (two new)

- Three structures were observed:

<table>
<thead>
<tr>
<th></th>
<th>BW1</th>
<th>BW2</th>
<th>BW3</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>6552 ± 10 ± 12</td>
<td>6927 ± 9 ± 5</td>
<td>7287 ± 19 ± 5</td>
</tr>
<tr>
<td>Γ</td>
<td>124 ± 29 ± 34</td>
<td>122 ± 22 ± 19</td>
<td>95 ± 46 ± 20</td>
</tr>
<tr>
<td>N</td>
<td>474 ± 113</td>
<td>492 ± 75</td>
<td>156 ± 56</td>
</tr>
</tbody>
</table>

- **Peak at 6.9 GeV**: consistent with X(6900) reported by LHCb (9.4σ)
- Two new structures, provisionally named as X(6600) (5.7σ) and X(7300) (4.1σ)

- Additional study together with spin-parity measurement required to explain nature of the structures
Di-\(J/\psi\) production and search for resonances

- **ATLAS**

Excess in \(J/\psi + J/\psi\) and \(J/\psi + \psi(2S)\) spectra

- Three candidates in \(J/\psi + J/\psi\) and two candidates in \(J/\psi + \psi(2S)\) spectra

\[
\begin{array}{cccc}
\text{(GeV)} & m_0 & \Gamma_0 & m_1 \\
\text{di-\(J/\psi\)} & 6.22 \pm 0.05^{+0.04}_{-0.05} & 0.31 \pm 0.12^{+0.07}_{-0.08} & 6.62 \pm 0.03^{+0.02}_{-0.01} & 0.31 \pm 0.09^{+0.06}_{-0.11} \\
\text{\(J/\psi + \psi(2S)\)} & m_2 & \Gamma_2 & \\
6.87 \pm 0.03^{+0.06}_{-0.01} & 0.12 \pm 0.04^{+0.03}_{-0.01} & \\
\end{array}
\]

- Both fits have a peak consistent with \(X(6900)\) reported by LHCb
Di-Y(1S) and search for resonances in Y(1S)µ⁺µ⁻

- **Y(1S) pair production for unpolarized case**
 \[\sigma_{Y(1S)Y(1S)} = 79 \pm 11_{\text{stat}} \pm 6_{\text{syst}} \pm 3_{\text{b}} \text{ pb}, |y|<2.0 \]

- First measurement of DPS contribution to \(\sigma_{Y(1S)Y(1S)} \)
 \[f_{\text{DPS}} = (39 \pm 14)\% \]

- **No excess** of events compatible with signal is observed in 4-\(\mu \) invariant mass spectrum

Joint TH and EXP session on quarkonia at the LHC