General searches for new phenomena with the ATLAS experiment

Xiaowen Su^{1,2} on behalf of the ATLAS Collaboration QCD@LHC, November 29, 2022

¹USTC, ²IJCLab

Introduction

The Standard Model (SM)

- A successful theory of fundamental particles and interactions
- Tested by many experiments like the LHC
- SM is not perfect:
 - · Unification of the interactions?
 - ・No gravity
 - ...

ATL-PHYS-PUB-2022-009

Physics beyond the Standard Model (BSM) Searches

- No new physics has been found so far by model-specific searches
- Signals might be hidden in kinematic regimes and final states that have remained unexplored
- Motivate a model-independent analysis to search for BSM physics

What is the general search

- It is generic: performed with multiple final states
- It is model-independent: minimal features of BSM physics are assumed

General searches at ATLAS

- Global general search: Eur. Phys. J. C 79, 120 (2019).
- A search for new resonances in multiple final states with a high transverse momentum Z boson ($Y \rightarrow Z + X$): arXiv:2209.15345
- Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states($Y \rightarrow H + X$): ATLAS-CONF-2022-045
- Search for new phenomena in three- or four-lepton events (Multi-lepton general search): Phys. Lett. B 824 (2022) 136832

Global general search

- Classify events according to the combinations of high p_T reconstructed objects (e, μ , γ , (b-)jets, E_T^{miss}) in the event
- Obtain the background from MC predictions
- $\cdot\,$ Calculate the deviation between data and SM expectations in 686 classes
- \cdot No significant deviations are found in the $3.2 fb^{-1}$ of dataset collected with ATLAS detector in 2015

Eur. Phys. J. C 79, 120 (2019).

$Y \rightarrow Z + X$: Introduction

- A general search for new resonances in events with high p_T (> 100GeV) Z ($66 < m_Z < 116$ GeV) (arXiv:2209.15345)
- Signal process: $pp \rightarrow Z(ee/\mu\mu) + X$, X: all possible final states
- Resonance can be induced by X or Y, use m_X and m_{ZX} as observables
- Define 6 exclusive event categories by the leading p_T object in X: Lead small-R jet, Lead b-jet, Lead large-R jet, Lead photon, Lead electron, and lead muon. Additionally, one inclusive category is defined
- \cdot Search for local excesses on m_X and m_{ZX} spectra in each category

$Y \rightarrow Z + X$: Search strategy

- The SM background is modelled by a fit to the m_X or m_{ZX} spectra with smooth functions
- BumpHunter(BH) algorithm is applied to the mass spectrum to search local excesses
- The largest excess has a BH *p*-value of 0.48 and 0.1 before and after excluding the initial BH interval
- · No significant excesses are observed in any of the mass spectra

$Y \rightarrow Z + X$: Results

- Exclusion upper limits are derived at 95% CL for:
 - Model-independent results: Gaussian-shaped signals with relative width values of 3%, 5% and 10%
 - Model-dependent results: HVT signal ($W' \rightarrow ZW \rightarrow llqq$)

$Y \rightarrow H + X$: Introduction

- Search for a heavy resonance Y decaying to a SM Higgs $(b\bar{b})$ and a new particle X in a fully hadronic final state(ATLAS-CONF-2022-045).
- Higgs($b\bar{b}$) and $X(q\bar{q})$ are highly boosted, and each is reconstructed as a single large-R jet
- Tag the X in a signal model-agnostic way through the use of a per-jet anomaly score derived from a ML-based data-driven method

Analysis workflow

- Resolve the ambiguity between two large-R jets into X and H candidates using $D_{H_{bb}}$
- Separate events into three categories (anomaly, two-prong merged and two-prong resolved) according to D_2^{trk} (the energy correlator substructure variable) or anomaly score of the X candidate
- Define CRs(CR0, HSB0, HSB1), VRs(LSB0, LSB1) and SR according to the H candidate mass and $D_{H_{bb}}$ score

$Y \rightarrow H + X$: Selection

Higgs candidate tagging

- Discriminate Higgs jet from the two J in the events using the jet-level discriminant $D_{H_{bb}}$
- $\cdot \ D_{H_{bb}} = ln \frac{p_{Higgs}}{f_{top} \cdot p_{top} + (1 f_{top}) \cdot p_{multijet}}$
- + p_{Higgs}, p_{top} and $p_{multijet}$ are three NN classification scores
- $\cdot f_{top}$ determines the weight of the top background shape
- + A selection of $D_{H_{bb}}$ > 2.44 defines a WP at 60% efficiency

Anomaly SR

- · Primary SR based on anomaly detection
- Select X particles based solely on their incompatibility with the expected SM background
- Anomaly detection is based on a fully unsupervised variational recurrent neural network (VRNN, arXiv:2105.09274)
- Anomaly Score (AS) of the X candidate > 0.5

Two-prong SRs:

- Based on the reconstruction of X
- Previous results with $36.1 fb^{-1}$ data [Phys. Lett. B 779 (2018) 24]
- · Merged: large-R jet with two-pronged substructure
- Resolved: two small-R jets

$Y \rightarrow H + X$: Background estimation

- · Background dominated by high- p_T multijet events
- The background estimation is fully data-driven and derived from regions that are orthogonal to the SR
- Strategy: Derive weights using a DNN to reweight CR to SR and estimate the background¹
- The background shapes are obtained from data in CR0
- Weights are derived from HSB0 and HSB1, validated using data in LSB0 and LSB1
- Good agreement is observed of the reweighted shapes to the true tagged data in all distributions

¹U. Michelucci and F. Venturini, Estimating neural network's performance with bootstrap: A tutorial, Machine Learning and Knowledge Extraction 3 (2021) 357

$Y \rightarrow H + X$: Results

- Results are derived by performing background-only fits and scanning with BumpHunter
- Considering all m_Y and m_X bins, the largest observed excess has a global significance of 1.47σ
- $\cdot\,$ No significant deviations of data are observed
- Signal-plus-background fits are performed to determine the 95% CL upper limit on the cross-section of the $Y \rightarrow XH$ process
- It is the FIRST result from ATLAS that uses unsupervised machine learning!

Overview

• Search the entirety of the three or four leptons (3ℓ and 4ℓ , $\ell = e, \mu$) data, except validation and control regions (Phys. Lett. B 824 (2022) 136832)

Signal Region (SR) Definition

- Separate 3/4 lepton phase space into 7 signal regions
- Event split: $E_T^{miss} > 50 \, GeV$ and on-/off-Z lepton pair (81 < m_{ll} < 101GeV)
- Further split the SRs by the distribution of m_{inv} of all leptons

Control Region

- 2 control regions are used to constrain the normalization factors of disboson (WZ and ZZ) background and check the fake performance
- CRs are universal for all signal regions

Multi-lepton general search: statistical analysis

Normalization factors

- The normalization factors of WZ and ZZ are obtained by fitting CRs simultaneously
- WZ: 0.98 ± 0.07
- ZZ: 1.05 ± 0.09

- All SRs with data and post-fit background yields
- For each SR, define the significance as: $Z = \hat{N}_S / \Delta \hat{N}_S$ \hat{N}_S : the number of signal events $\Delta \hat{N}_S$: uncertainty from fitting
- No significant excess is found in any of the SRs

Multi-lepton general search: results

- Limits on the number of signal events are set for the visible cross-section σ_{vis}
- The results are also interpreted for two particular BSM models

Model	Mass [GeV]	Best single SR	$m_{\rm inv}$	A×ε	$\sigma_{ m exp}^{95}$ [fb]	$\sigma_{\rm obs}^{95}$ [fb]
Type-III Seesaw	400	3ℓ , Off-Z, $E_{\rm T}^{\rm miss} > 50 {\rm GeV}$	> 600 GeV	0.0036	41 +17	27
	700	3ℓ , Off-Z, $E_{\rm T}^{\rm miss} > 50 {\rm GeV}$	> 600 GeV	0.012	12 +5	8.8
$H^{\pm\pm}$	300	4ℓ, Off-Z	> 400 GeV	0.37	$0.18 \begin{array}{c} +0.08 \\ -0.05 \end{array}$	0.12
	500	4ℓ , Off-Z	> 400 GeV	0.40	$0.16 \begin{array}{c} +0.07\\ -0.05 \end{array}$	0.11

- Model-independent general searches for BSM can help to explore the phase-space regions that remained uninvestigated
- It's not as sensitive as a dedicated analysis optimized for a specific BSM model, but it could help to identify the promising phase-space regions for the future dedicated study
- No significant excesses have been found in general searches covered by this talk
- More results are coming from Run 2 and Run 3 data!