

Inclusive quarkonium production in pp (and ppb) at the LHC

> JaeBeom Park (Korea University) - on behalf of ALICE/ATLAS/CMS/LHCb collaboration

> > <u>QCD@LHC 2022</u> @ Saclay (France)

QCD@LHC 2022

Valuable Theory, Experiment, and Plenary talks for quarkonia! - and enjoy excursion in Paris!

Heavy quarks and quarkonia in small **systems** - Zaida Conesa Del Valle <u>link</u> -

Open heavy flavour/quarkonium associated production at the LHC - Achim Geiser <u>link</u> -

Exclusive quarkonium production at the LHC - Adam Matyja <u>link</u> -

> Exotic Hadrons at LHC - Mindaugas Sarpis <u>link</u> -

Joint TH EXP on quarkonia at the LHC - Maxim Nefedov <u>link</u> -

Joint TH EXP on quarkonia at the LHC - Valeriia Zhovkovska <u>link</u> -

Photo on last Saturday near Musée d'orsay

QCD@LHC 2022

Motivation

QCD@LHC 2022

EPJC 74 (2014) 2872]

Motivation

Production mechanism still under investigation since the "November Revolution" in 1974 (48 years)

QCD@LHC 2022

Quarkonia @ LHC : "Firsts" measurements

First measurements of quarkonium production at the LHC!

Clear J/ ψ peak in dimuon mass spectra in all four experiments

 \bigcirc

Quarkonia @ LHC : "Firsts" measurements

Quarkonia @ LHC : "Firsts" measurements

[EPJC 71 (2011) 1575] [nb/(GeV/c)] $\times d^2 \sigma/dp_T dy (nb/GeV/c)$ $\sqrt{s}=7$ TeV 🕂 CMS data - LHCb (2.0 < y < 4.5)····· PYTHIA Direct NLO NRQCD (2.0 < y < 4.5)- CASCADE Direct LO NRQCD (2.0 < y < 4.5)CEM $\frac{10^{\circ}}{10^{\circ}}$ $1.6 < |y_{J/\psi}| < 2.4$ 10⊧ Μ $CMS, \sqrt{s} = 7 \text{ TeV}$ $L = 314 \text{ nb}^{-1}$ 10⁻³ 10^{-10} 25 30 10 20 15 20 10 15 5 (nb/GeV/c) 10 $B \rightarrow J/\psi$, FONLL B→ J/ψ, FONLL CASCADE CASCADE 10^{5} **PYTHIA PYTHIA** - CMS data CMS data _d ∠ 10^{4} $d^2 \sigma / dp_{_{T}}$ $1.6 < |y_{J/\psi}| < 2.4$ $|y_{J/\psi}| < 1.2$ · 10³ × 10⁻¹ മ Ш $\hat{\mathbf{v}}_{10^2}$ $CMS, \sqrt{s} = 7 \text{ TeV}$ $CMS, \sqrt{s} = 7 TeV$ 10⁻² 10⁻² $L = 314 \text{ nb}^{-1}$ $L = 314 \text{ nb}^{-1}$ 10 10^{-3 L} 15 20 25 30 15 20 25 30 10 10 $p_{\perp}^{J/\psi}$ (GeV/c) $p_{\tau}^{J/\psi}$ (GeV/c) \bigcirc

QCD@LHC 2022

Also constraints to FONLL with prompt and nonprompt separation

Cutting edge cross section

[JHEP 03 (2022) 190]

Precision measurements for J/ψ mesons from low~high-p_T : 0~300 GeV/c

Crucial constraints to theoretical developments (data uncertainty much smaller)

[PLB 780 (2018) 251]

[ATLAS-CONF-2019-047]

QCD@LHC 2022

Polarization (1) : Charmonia

Measurements of S-wave charmonium states in various frames (CS, HX, ...) No sign of nonzero polarization up to 60 (40) GeV/c for J/ψ and ψ (2S)

Polarization (2) : Bottomonia

P-wave : Charmonia

P-wave : Bottomonia

Feed-down in pp @ LHC

[EPJC 72 (2012) 2100] [JHEP 07 (2014) 154] [PLB 718 (2012) 431] [EPJC 76 (2016) 283] [PRL 114 (2015) 191802]

• LHC J/ ψ pp data

[PLB 749 (2015) 14] [JHEP 11 (2015) 103] [EPJC 74 (2014) 3092]

Significant amount of feed-down contribution observed in both charmonia and bottomonia

• LHC Y(nS) pp data

Lack of information for $\chi_b(mP) \rightarrow Y(nS)$: limited on both data and theory

η_c meson @ LHC

Only CS for $\eta_c(1S)$ production? p_T shape could be sensitive to possible CO contribution... Ratio of $\eta_c(2S)/\psi(2S)$ suggested to be a cleaner probe : free from feed-down corrections

[PLB 825 (2021) 136842]

PYTHIA show discrepancy for the amount of jet-fragmentation of J/ ψ production Improvement possible with inclusion of improved of jet & gluon fragmentation functions

J/ ψ in jets

[JHEP 11 (2021) 181]

[PRL 119 (2017) 032002]

[PLB 804 (2020) 135409]

J/ ψ in jets

Production of J/ ψ in jets compared with NRQCD LDME parameter sets based on FJF

BCKL set in agreement in all three z ranges \rightarrow predicts also small polarization at high-p_T : Caveat of deviation with other results (η_c , measurements in B factories, ...)

J/ ψ in jets

QCD@LHC 2022

Fixed target J/\u03c6 results

[arXiv:2211.11652]

- Results compared to HELAC-Onia (+CT14NLO & nCTEQ15 PDF) and ICEM model
- J/ψ -to-D^o ratio : α' compatible with expectations from atomic mass number scaling

Quarkonia in pA

Origin of additional suppression for excited quarkonium states still under investigation - comover breakup? possible CGC? hot nuclear matter effect?

Prompt J/ ψ vs b -> J/ ψ in pA

Indication of different in-medium effects for charm vs bottom at forward-y

Not seen at mid-y? —> Need better precision to resolve flavour dependent nuclear effects

Y in pp w UE study

Y in pp w UE study

(n.b. p_T>7 GeV/c / N_{track} cutoff values)

- Successful achievement of quarkonium measurements in the past ~ 10 years @ LHC \bigcirc
- \bigcirc Precision cross section results in inclusive quarkonium production for S-wave quarkonium : uncertainty smaller than theory calculations
- No significant polarization observed for S-wave quarkonium states from low- to high- p_T \bigcirc
- \bigcirc J/ψ in jets or associated with jet(s) as new probes to understand quarkonium production
- Puzzle of quarkonium modification in pA collisions still not resolved \bigcirc
- Mystery of yield ratios w.r.t UE in pp collisions \bigcirc - rapidity gap study to be done sophisticatedly

Summary

Charmonia in pPb

[JHEP 07 (2020) 237]

Agreement with nPDF modification for J/ ψ

Additional suppression for $\psi(2S)$: hint for comover breakup

Quarkonium production in pPb

Similar trend observed for bottomonia and charmonia

QCD@LHC 2022

Y pPb at LHC

1. Sequential suppression : $R_{pPb}(Y(1S)) > R_{pPb}(Y(2S)) > R_{pPb}(Y(3S))$

2. Possible description with comover interaction model

QCD@LHC 2022

Flow in pPb

- Still not clear the feature of finite $J/\psi v_2$
- Compatible with prompt D^o

Y in pp w UE study

[JHEP 11 (2020) 001]

If Y-particle correlation only

- -> Only affect forward region
- Decreasing trend for all regions : Linked with UE!
- No clear ordering
- Note : Y p_T > 7 GeV/c)

P-wave state in pPb

[PRC 103 (2021) 064905]

Agreement with pp measurements

- First measurement of χ_c states in pPb

QCD@LHC 2022

Y(nS)/Y(1S) vs E_T & N_{trk}

[JHEP 04 (2014) 103]

Prompt vs nonprompt J/ ψ in pA

[EPJC 77 (2017) 269]

J/ψ in jets FJF LDME set test

$$\Xi(E_{\rm c};z_1) \equiv rac{N(E_{
m c};z_1)}{\int_{0.3}^{0.8} N(E_{
m c};z) \, {
m d}z}$$

~85% of J/ψ are produced within a jet $(E_{J/\psi} > 15 \text{ GeV}, |y_{J/\psi}| < 1, E_{jet} > 19 \text{ GeV}, |n_{jet}| < 1)$

QCD@LHC 2022

Rapidity gap measurement

ATLAS : |y| < 1.6-2.0CMS : |y| < 2.4ALICE : 2.5 < y < 4.0LHCb : 2.0 < y < 4.5

- in fixed N_{trk} region
- for both pp and pPb

• Rapidity gap study for excited-to-ground state ratio vs event multiplicity • $\psi(2S)/J/\psi$ or Y(nS)/Y(1S) vs N_{trk} for (1, 2, 3)

• Take advantage of wide rapidity range from all LHC experiments : possible

