

TMDs, GPDs and GTMDs

Cédric Lorcé

Preliminary words

This is a last-minute talk

I am no LHC expert

I apologize for the non-exhaustive, superficial, biased overview and for any misrepresentation

I am grateful to Shohini Bhattacharya and Charlotte Van Hulse for their kind help!

Parton distribution functions

1D picture of the hadron structure

At the LHC:

- Key input to describe/study high-energy collisions
- High-energy data used to constrain/study hadron structure

Parton distribution functions

Numerous aspects have been addressed in this conference

From e.g. WG7: Parton tomography from 1D to 5D

- Dijet production (Le Mahieu, Hatta)
- Quarkonium production (Ferreiro, Guzey, Matyja)
- PDFs fits and uncertainties (Cruz Martinez, Kassabov-Zaharieva, Newman, Silvetti)
- Intrinsic charm and heavy flavors (Maciula, Magni, Mattioli)
- Nuclear PDFs (Boente Garcia, Paakkinnen)
- Double PDFs and MPI (Gaunt)
- Low-x and gluon saturation (Caucal)
- Fragmentation and hadronization (Volkel)
- Photon induced and proton-nucleus collisions (Manna)

A fixed-target experiment@LHC would provide key information in the high-x region ! [Hadjidakis et al. (2021)]

Generalized parton distributions $\Delta = p' - p$ $\xi = -\frac{\Delta}{(p'+p)^+}$

$$\Delta = p' - p$$

$$\xi = -\frac{\Delta^+}{(p'+p)^+}$$

 $\xi = 0$

1+2D picture of the hadron structure

Can be used to: • probe parton orbital angular momentum (Riberdy)

 model double PDFs [Diehl, Ostermeier, Schaefer (2011)] [Diehl, Gaunt (2018)]

Some GPDs could be measured in UPCs through exclusive photoproduction of a γ -meson pair [Duplancic et al., 2209.05380]

Transverse momentum distributions

3D picture of the hadron structure

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \sim 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$

Gluon TMDs (Celiberto)

Transverse momentum distributions

Violations of Lam-Tung relations $1 - \lambda = 2\nu$ as a signature of parton transverse momentum

[Boer (1999)] [Peng, Chang, McClellan, Teryaev (2016)]

[Motyka, Sadzikowski, Stebel (2017)]

Sensitivity to TMDs in low-p_T spectrum of Z and W

[Hautmann, Scimemi, Vladimirov (2020)] [Gutierrez-Reyes, Lelal-Gomez, Scimemi (2020)]

Quarkonium-pair production as a probe of unpolarized and linearly polarized gluon TMDs, including TMD evolution effects

[Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel (2020)]

Prospects for quarkonium studies at the high-luminosity LHC

[Chapon et al. (2022)]

LHCSpin project (polarized fixed target at LHCb)

[Aidala et al., 1901.08002]

[D'Alesio, Murgia, Pisano, Rajesh (2019)]

Generalized TMDs

3+2D picture of the hadron structure

$$WD(x, \vec{k}_{\perp}, \vec{b}_{\perp}) \sim \mathcal{F} [GTMD(x, k_{\perp}, \Delta)]$$

Phase-space or Wigner distributions

[Belitsky, Ji, Yuan (2004)] [Lorcé, Pasquini (2011)]

$$L_z = \int dx d^2k_{\perp} d^2b_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp}) \operatorname{WD}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$$

[Lorcé, Pasquini (2011)] [Hatta (2012)] [Ji, Xiong, Yuan (2013)]

Gluon GTMDs could be accessed at LHC via exclusive production of

double quarkonium

[Bhattacharya, Metz, Ojha, Tsai, Zhou (2022)]

diffractive dijet in UPCs

[Hagiwara *et al.* (2017)]

(Le Mahieu, Hatta)

Encouraging first attempt at measuring azimuthal correlations within exclusive dijets in γ**-Pb collisions** [CMS Collaboration, 2205.00045]

Last words

Nice complementarity between LHC and EIC@BNL

LHC

- Large Q² lever arm (TMD evolution)
- W/Z production (quark TMDs)
- Small-x region
- Mostly (semi)inclusive

EIC

- ep and eA processes
- Polarization
- High luminosity (~HERA 10²⁻³)
- Intermediate and high-x region
- Many possible exclusive channels