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The focus of the presentation is on the analysis of
the magnet straight section, since MQXFBP1 and
MQXFBP2 were limited in middle of the magnet
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Magnet design

Target: 132.2 T/m; 150 mm coil aperture, 11.3 T B¢,

Q1/Q3 (by US-AUP Project), 2 magnets MQXFA with 4.2 m L

Q2a/Q2b (by CERN), 1 magnet MQXFB with 7.15m L,

Joint short model development program (MQXFS) to validate the design

Different lengths, same design, very similar assembly procedure and loading target
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Magnet assembly

Bladder
pressurization

Key insertion

Cool down

Powering

Open enough clearance to
insert the keys (key size +
=~ 0.3 mm clearance)

Insert the keys to set the
RT pre-load level

Increase of pre-load due to
the diff. of thermal
contraction between
aluminum and iron

Coil un-loading due to
electromagnetic forces

40 %

87 %

93 %

40 %

87 %

10 %

Susana lzquierdo Bermudez




Magnet assembly

Bladder
pressurization

Key insertion

Cool down

Powering
(16.23/17.5 kA)

Open enough clearance to

be insert the keys (key
size + 0.2-0.3 mm)

Insert the keys to set
the RT pre-load level

Increase of pre-load
due to the diff. of
thermal contraction
between aluminum and

Coil un-loading due to
electromagnetic forces
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Stress map and stress values for the new procedure, loading with auxiliary bladders in the cooling holes.
Nominal assembly with 80 MPa pole compression at warm, 110 MPa at cold
Uncertainty due to material properties and assembly tolerances + 15-20 MPa




Radial cracks and stress map

After cool down

The higher concentration of micro-cracks in the o Stress concentration
analyzed sections of coil 108 straight section is reqion. 125 MPa at
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Stress concentration

Remark: In the case of BP1, with a maximum coil stress of 100 MPa at region, 110 MPa at |,
warm after loading, we expect 135 MPa in the pole block after cool (120 MPa at Iult)
down and a maximum of 110 MPa in the mid-plane at 15 kA -




Mechanical instrumentation

Strain is measured in:
1. Rods
2. Aluminum shell

3. Caoill Titanium pole, providing the peak stress in the coil (pole turn inner
layer) during loading and cool down.

For MQXFS, one longitudinal section is measured. For MQXFB,
measurements are performed in 3 longitudinal sections

Coils instrumented with
strain gauges and of FBGs

Iron Yoke LHe SS
Vessel Al-shells instrumented with

Al Shell strain gauges

Rods instrumented Iron Master
with strain gauges

Coil

e
Alignment

Pin Key
Al Collar
Titanium
Bladder Pole
Slot
Cooling
Pole Key = Hole
LE MI RE

MQXFB, three longitudinal
measuring location measuring locations

MQXFS, one longitudinal
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MQXFS

Azimuthal pre-load level parameter space explored with the short model program, with magnets reaching >
90 % of the short sample limit, with a pole coil compression ranging from:

25 MPa - 115 MPa after RT loading

65 MPa — 120 MPa after cool down
During bladder operations, 20-40 MPa overshoot needed to insert the keys, with a peak of 140 MPa in one
coil in MQXFS5.
The measured unloading of the pole during powering is consistent with the expected pre-stress lever from
the RT assembly: lower pre-load at room temperature, sooner unloading during powering

Measured azimuthal stress during RT loading. Error bars represent the Change of azimuthal pole pre-stress during powering, as a function of
spread among the 4 coils in the same longitudinal location the square of the current. Average among the 4 coils in the magnet.
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MQXFA

AUP defined the pre-load targets as reference MQXFS4 (see MQXFA Series Magnet Production Specification, US-
HiLumi-doc-4009)

The target average measured stress on coils and shells at the end of the loading (after at least 24 h) shall be

Shell average azimuthal stress: +58 + 6 MPa
Coil (winding pole) average azimuthal stress: -80 £ 8 MPa
For the maximum stress reached during the pre-load operations, the maximum compression measured on each

coil shall never exceed -110 MPa

After cool down, the pole pre-stress is 100 — 110 MPa - coils remain in contact with the winding pole up to 80-90 %
of the nominal current. Good magnet to magnet reproducibility

Training performance MQXFS4 Change of azimuthal pole pre-stress during powering, as a
function of the square of the current.
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MQXFB — RT loading

MQXFB and MQXFA have identical target preload, i.e., average shell stress +58 + 6 MPa,
average coil stress (winding pole): -80 £ 8 MPa

In terms of peak stress during loading, the maximum measured in MQXFBP2&P3 magnets was
-140 MPa, higher than the -110 MPa set as limit for MQXFA, but reached in MQXFS5

The increase of coil azimuthal stress during welding is lower than the overshoot during loading
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MQXFB — Cold

At cold, only MQXFBP2 measurements in the return and middle magnet sections are available

In MQXFBP2, the increase of the coil stress during welding was 30 MPa (vs 8 + 8 MPa specified at the
time), so the final stress of the colil at cold is 15-20 MPa higher than the initial target

Un-loading of the pole turn measured with the mechanical instrumentation when approaching the nominal
current, as expected from the RT pre-load levels when including the additional stress form the welding

Change of azimuthal pole pre-stress during powering, as a function of the
square of the current. Average among the 4 coils in the magnet.
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Improved procedure: Loading

—

During bladder operations, 20 - 40 MPa overshoot
needed to insert the keys

New loading procedure developed in MQXBMTS3, using
auxiliary bladders in the cooling holes, allows to \
completely remove the 20 - 40 MPa overshoot of coil \'
stress during loading
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MQXFBMT3: the assembly validation experiment Jii
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https://indico.cern.ch/event/1138192/

Improved procedure: Alignment (yoke-shell)

In MQXFBP3, mis-alignment in the horizontal axis between yoke-
shell subassembly modules observed, resulting on a magnet ‘snaky’
shape (max-min = 1.4 mm), see EDMS 2477740.
= After cold mass completion, same shape as after magnet
loading

= In MQXFBMTS, the external faces of the yoke modules were
machined after shell-yoke subassembly, and the procedure &
measurement system for the horizontal yoke shell subassembly was
optimized, keeping the alignment of the outer surface of the Al shell is
within £ 0.3mm
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https://edms.cern.ch/document/2477740

Improved procedure: Bladders, axial pre-load and coil pack

situation for the coils (see EDMS 2276044)

During the loading of MQXFBP1, 8 bladders broke. One case resulted in an unbalance stress

New bladder technology (tubular bladders instead of welded plates) implemented in
MQXFBP2. No bladder failure in BP2, BP3 and MT3.

For MQXFBP2, improved axial loading system (4 pistons instead of 1) for an easier force
balance among rods, including in-situ measurements of rods elongation during loading = Very
good balance of force among the four rods

Coil pack bolting process optimized in MQXFBP3, reducing the spread of the average pole key
gap per quadrant from 0.5 mm to 0.1 mm
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Axial system with 4 rods

Coil pack squareness
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Conclusions

A new loading procedure, with auxiliary bladders in the cooling holes, has been
developed and demonstrated in MQXFBMT3. The new loading method allows to
eliminate the 20-40 MPa overshoot of coil stress during bladder operations.

MQXFBMT3 was heavily instrumented, it validated all parameters relevant for magnet
assembly.

In addition to the new loading procedure, the most relevant improvements in magnet
assembly are:

New bladder tubular technology (MQXFBP2), allows loading without bladder failure

New axial loading system (MQXFBP2), for a more balanced axial preload

New coil bolting procedure (MQXFBP3), for a better alignment of the coil pack

New yoke-shell subassembly procedure (MQXFBMT3), for a better alignment of the structure

Coils for the assembly of the next magnet, MQXFBO02, are available, see here

(Technical meeting to review and select the coils). Timeline for the assembly:
Yoke-shell & coil pack subassembly: May 2022
Magnet assembly and loading: June-July 2022



https://indico.cern.ch/event/1151483/
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Mechanical instrumentation

Al-shells instrumented with
strain gauges

Coils instrumented with

strain gauges and of FBGs .. . oo .
_ 2 g The strain is measured in the coll titanium

pole. The peak stress in the coil during
loading and cool down is in the IL pole turn,
very close to the stress in the Ti pole
(measuring location)
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MQXFS, one longitudinal
P measuring location
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Welding

Welding requirements were modified, to assure no coupling of the SS vessel to the
magnet (Same requirements for AUP and CERN)

Previous target: 8 £ 8 MPa ACoil stress from welding

New target: 0 + 8 MPa ACoil stress from welding
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A Pole azimuthal stress [MPa]
SS Vessel Membrane Stress [MPa]




Coll stress

--m--Peak coil, RT preload 80 MPa

—m—Peak IL pole turn, RT preload 80 MPa

--#--Peak coil, RT preload 100 MPa

—e—Peak IL pole turn, RT preload 100 MPa
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I quadrants, with cooling channels

Stress during bladders operation

{

Bladders
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Assembled magnet alignment

[mm]

e MOXFBMT3
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Deviation in magnet horizontal axis
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Improved procedure: Alignment (coil pack)

By design, 0.25 mm gap between the pole key collar at room temperature

Coil pack bolting process optimized in MQXFBP3, reducing the spread of the average
pole key gap per quadrant from 0.5 mm to 0.05 mm
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Improved methodology and measuring system in MQXFBMT3, reaching a uniformity and
squareness the coil pack of £ 0.1 mm and + 0.2 mm respectively
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RT loading MQXFS

Pole Azimuthal Stress RT (MPa)

-110 S3c

-130
0 20 40 60 80 100 120

Shell azimuthal stress RT (MPa)
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RT transfer functions
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