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Motivation

  ◦ Climate projections have very significant uncertainties

  ◦ Only incomplete description of physical processes in the 
atmosphere in current simulations

  › No (effective) models for cloud formation, interaction 
with biosphere, ...

  › Very large number of interacting scales (1 m to 107 m)

  › ...
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Impact
  ◦ Address climate change

  › Super-resolution, classification, predictability, ...

  › Machine-learning corrected climate simulations

  ◦ Scientific insight

  › Finite space-time description of interaction across 
scales and phenomena in the atmosphere
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AtmoRep@CERN
  ◦ CERN expertise of relevance: 

  › Handling of large data sets / storage infrastructure

  › Distributed analysis

  › Machine learning

  › Uncertainty / error estimation

  › ...
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AtmoRep@CERN
  ◦ Collaboration with OpenLab (Sofia Vallecorsa) already 
underway

  ◦ Common interests and directions 

  › Information extraction from large amounts of data

  › Uncertainty quantification in deep learning

  › Transformer neural networks

  › ...
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AtmoRep
  ◦ Use large amounts of historical observations to improve 
climate projections and related applications

  ◦ Significant potential impact through various applications

  ◦ Scientifically interesting and challenging
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Representation learning
  ◦ What is a representation? 

  › Layers of neural network are nonlinear maps of input 
data to intermediate representation (elements in a vec-
tor space)

  › For a trained neural network the intermediate layers 
hence provide transformed data adapted to a domain

  › Often the same intermediate representations are use-
ful for a range of tasks
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Representation learning
Visualizing and Understanding Convolutional Networks

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

From M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors, Computer 
Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer International Publishing.
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Scientific insight
  ◦ Spatio-temporal representation learning:

  › Learn representation that describe finite time spatio- 
temporal interactions across scales
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Scientific insight
  ◦ Spatio-temporal representation learning:

  › Learn representation that describe finite time spatio- 
temporal interactions across scales

  › Capture interactions that are difficult to describe with 
classical approaches

  › Transformer neural networks allow for simple  
interpretability
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Why machine learning?
  ◦ Only incomplete description of physical processes in the 
atmosphere

  › No (effective) models for cloud formation, interaction 
with biosphere, ...

  › Most models only provide infinitesimal information

  › Very large number of interacting scales (1 m to 108 m)

=> Machine learning based on observations to capture 
phenomena and interactions not well described so far


