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ATLAS Inner Detector

TRT (73 straw layers)

SCT (4 layers)

Pixels (3 layers)

SCT (9 disks)

Pixels (3 disks)

TRT (14 wheels)
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Where we are coming from …
• < 2003: 2 tracking algorithms with incompatible data models:

• iPatRec: well-tuned inside-out track search with global χ2 fit
• xKalman: flexible track search using a combinatorial Kalman Filter fitter
Both packages were well functional according to physics requirements

• Internal software review in 2003: recommends a re-design:
• High flexibility (more modular design)
• Maintainability
• Common data model, structure and framework
• State-of-art algorithms

• Commissioning with real data started in 2004:
• Combined test beam 2004 (used as an early testbed)
• Cosmic runs:

• Combined SCT+TRT barrels at the surface May 2006
• Pixels endcap A: October 2006
• Combined SCT+TRT endcap C: mid Nov 2006

• Cosmics, beam-halo and beam gas events in the pit with other detectors.

New model and migration 
to this model starts end 2003!
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Reconstruction software

• Common abstract interfaces for all algorithms
• Common Event Data Model.
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Reconstruction software
New Event Data Model (EDM)

 Vertices

Raw Data
 Object   

SpacePoint

Prepared
RawData        Track 

 Segment

Measure-
mentBase

Track Track-
Particle

Clustering
DriftCircle-
Formation

(local) Pattern
Recognition

Track extension
and fit

Post
Processing

• Common for Event Filter and offline.

• Common tracking EDM defines
detector independent EDM base classes

• Concrete implementations exist for
all muons and Inner Detector 
sub-systems (common tracking tools)
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Detector description

Material updates

• Detector description (GeoModel) is a common source for:
•  Geant4
• Digitization
• Reconstruction
• Tracking geometry

• Recently, a lot of work to get a more realistic description and a better
estimation of the material (items are being weighed)

New
Old



8

Detector Description
• Next CDC (Calibration Data Challenge):

• Simulate with:
• Increased material by conservative estimates in half of the detector (ID material is

required to be known with a precision of 1% for the W mass measurement, also
important for calorimeter calibration)

• Misaligned geometry and shifted/tilted magnetic field
• Reconstruct with nominal detector description and magnetic field, then align

and calibrate

• Misalignments possible at 3 levels
(subsystem, layer/disk, module) in both
simulation and/or reconstruction
• Alignment constants: Rigid module transforms
applied in detector description
• Fine corrections (as distortions) plan to apply
then in reconstruction and digitization
• The infrastructure to add material distortions is also in place

d0(mm)

As built geometry
reconstructed with
nominal geometry
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Extrapolator Tool

Use a completely connective
tracking geometry and extract
material + B-field information.

Purely mathematical
propagation of track
state through B-field

E-loss and Mult.Sc.
according to given
particle hypothesis

It uses a simplified
reconstruction geometry:
(fully connective, fast navigation)
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Tracking algorithms

• Different algorithms have been integrated in the new framework.

• Standard pattern recognition strategy (inside-out) (pattern coming from
xKalman):

• Track candidate finding in Pixel and SCT using combinatorial Kalman Filter
• Select good track candidates, full track fit and resolve ambiguities
• Extend resolved tracks into TRT
•  Refit of extensions and replace original if better

• TRT seeded reconstruction (outside-in) also now in place:
• Dedicated tracking for secondary particles
• Test beam and cosmic reconstruction (in addition to inside-out)

• CTB pattern recognition (inside-out & outside-in): developed for the test
beam and used also for cosmics
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Track fitters

Kalman Filter (KF)
Default

Global Chi2 minimization

• Different fitter tools are available (abstract interfaces for the fitters).
• Classical fitters implemented:

• Use the tracking geometry to take material effects into account taking as
input a particle hypothesis
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Tracking performance
Single muons 200 GeV
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        Multi-jet tt events

• The code implemented in the new
tracking framework has reached similar
performance level to the previous algorithms. 

iPatRec
New Tracking
xKalman                

Preliminary
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Specific fitters for electrons
Gaussian Sum Filter (GSF)

• The GSF is a generalization of the KF that models the asymmetry of the
Bethe-Heitler distribution as a Gaussian mixture.  
• It works as a series of Kalman Filters running in parallel

Material surface

Measurement
surface

Material surface

q/p resolution as a function of p
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Specific fitters for electrons
Dynamic Noise Adjustment (DNA) in the Kalman Filter

Pull (q/p)
Default KF  

Pull (q/p)    
DNA

• Used by the Kalman Filter to adjust the
track momentum if a strong brem is detected

Procedure

• Algorithm to locate and flag hits which might 
be associated with strong brem.

• If so, estimate the fraction of energy z
retained by the electron

• Calculate the effective σ(noise) which matches
the probability of such z

• Adjust the covariance matrix accordingly 2 GeV single 
electrons
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Brem recovery using the EM calorimeter

• For higher pt electrons the cluster position of the calorimeter can be
used to improve the electron momentum measurement

R(BREM)

X(BREM)

CLUSTER 
CENTROID

TRACK-CALO IMPACT POINT

pt (MeV)

25 GeV electrons

ID only

ID + Calo

First results         

Fit track with 7 parameters:
• 5 helix parameters
• 2 bremstrahlung (R, X)
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Vertex reconstruction
• All methods try to minimize:

• Global χ2 (by an iterative method)
• Kalman Filter
• Adaptive vertex fitter (based on a deterministic annealing filter)
• Adaptive multivertex fitter (dynamic assignment of tracks to vertices)

• 2 ways of obtaining unbiased estimator of the vertex are used:

• (1) Iteratively remove tracks incompatible with the actual vertex and fit again
(used by global χ2 and Kalman Filter)
• (2) Weight the track contribution to the chi2 with the estimated “a priori”

probability of that track to belong to the vertex to fit (used in adaptive fitter)

! 
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Vertex reconstruction performance
Primary vertex in tt with pile up at low lumi

Adaptive Multivertex fitter (default)

rms = 38 µm rms = 9.9 µm

• Efficiency to find the right vertex: 99.5 %
• Efficiency for having the signal vertex among the fitted ones: 99.99%
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Trigger reconstruction

• 2 different domains - Event Filter and
Level-2

• Timing budget ~1 sec vs 10 msec on
equivalent 8 GHz Pentium 4

• Level-2 runs dedicated reconstruction
software (some common code with offline)

• Event Filter is using same code as
offline, but runs in seeded mode.

Event Filter

Full reconstruction time per RoI for 25 GeV electrons:
~ 94 ms (KF, KF+DNA)
~ 213 ms (GSF) 



19

Commissioning with real data
• The tracking software is being commissioned with real data:

• Combined test beam in 2004 (full ATLAS barrel slice)
• Cosmic runs at the surface (final detectors before installation in the pit,

different configurations)

• Common software motivations for both tests:
• Exercise the full reconstruction chain with real data
• Real data means:

• Realistic detectors (imperfections and misalignments)
• Need to decode data
• Need to deal with conditions data base (cabling, DCS, DAQ, calibration & alignment

corrections)
• Need monitoring during data taking

• Study detector performance (efficiency, noise, resolution, etc)
• Improve simulation
• Get detector, DAQ, DCS, HLT, offline, … communities working together!
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Combined test beam
• 22.1 millions events taken with the
full ID setup were validated by offline
monitoring:

• e+-,π+-,µ+-,γ
• E scan: 1 - 350 GeV
• B scan: 0 - 1.4T
• Additional material (η=1.6):

• Pixels/SCT: 11% X/X0
• SCT/TRT: 22% X/X0

x

y

z

Same ATLAS tools used to provide 
the CTB detector description

CTB Tracking
Inner Detector
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Combined test beam

Simulation
20 GeV pions

Real data

µ(1/p) = 0.050 ± 0.002 GeV-1 µ(1/p) = 0.050 ± 0.002 GeV-1

Good data/MC 
agreement on the 
momentum resolution
(after alignment!)

Infrastructure to
get bad channels,
calibration and alignment
corrections from 
conditions
data base in place

masking
noise channels
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Concrete floor

Combined cosmic run with SCT and TRT barrel

• 1/8 TRT and 1/4 SCT cabled
• No B field → no material effects can be
taken into account
• ~450K events recorded

scintillators

SCT

TRT
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Combined cosmic run with SCT and TRT barrel

Real data
No alignment
σ=108 µm

(σ=63 µm in sim)

SCT residuals

TRT residuals Real data
Calibrated
σ=287 µm

(σ=282 µm in sim)

mm

mm

Track eff > 90% if 
enough space points

T
ra

ck
 E

ff
ic
ie
nc

y

Number SCT space points 

(σ=164 µm in sim 
with misalignment) 

No material
Corrections
possible
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Combined cosmic run with SCT and TRT barrel

• Monitoring code developed to check the data quality:

Δφ (SCT-TRT) vs event number

Check sub-detectors synchronizationSCT efficiencies per module in layer 1      

specification: 99%

• Data/MC comparisons
are being done to
improve the simulation
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Conclusions
• ATLAS has re-designed his tracking software following an internal review:

• Modularity, common interfaces and EDM
• Full trigger and offline integration
• First use case was combined test beam data analysis
• Performance of new code is at TDR level
• Several new developments integrated in new software

• Emphasis on realism and on real data analysis:
• Integration of alignment and calibration in reconstruction framework
• Conditions support to cope with real detector
• Precise description of detector material
•  Deformations and realistic field

• Computing System Commissioning in 2006/2007:
• Demonstrate complete functionality of close to final software
• Alignment and calibrations test for  full system
• Full chain "dress rehearsal" from Point-1 trigger farm to physics analysis

• ATLAS Inner Detector tracking software will be well prepared for LHC turn-on
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Backup slides



27

Specific fitters for high occupancy
Deterministic Annealing Filter

Noise Occupancy

Fa
ke

 h
it
 r
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e

• Extension of a simple Kalman Filter
• Annealing scheme to allow for fuzzy
track to hit assignment:

• Assign weights to competing hits,
freeze out correct assignment

Example use case:
TRT high occupancy tracking

Single tracks in TRT
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Material
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Vertex reconstruction performance
Primary vertex in WH(120) H(bb) with pile up at low lumi

z residual
rms: 62 µm 

y residual
rms: 9.71 µm 

Fake rate: 4.19% (±0.21)

Adaptive Multivertex fitter
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Vertex reconstruction performance

d0 reconstructed
σ = 13.23 ± 0.22 μm
RMS = 15.93 μm

d0 refitted
σ = 9.027 ± 0.15 μm

RMS = 10.41 μm

fitted vertex constrained

H → 4µ

•Tracks can be refitted with the knowledge of the fitted vertex → 
improves track parameters resolution in exclusive decays 
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CTB
Momentum resolution as a function of energy using Silicon

No extra
material

Extra
material
η = 1.6

ID

CTB Tracking
Combined ID-Muons


