The ATLAS Pixel Detector

Bonn, Dortmund, Genova, LBL, Marseille, Milano, New Mexico, Ohio, Oklahoma, Praha, Siegen, Udine, Wuppertal

Perugia, September 25th-29th VERTE 06

Markus Cristinziani

Physikalisches Institut Universität Bonn

- The Atlas Pixel detector
 Requirements, design, choices
- Module tests and detector integration
- Some issues
 - Potting, delamination, pipe corrosion, cables
- Present status and schedule

LHC and ATLAS

LHC and ATLAS

VERTE χ 06

Inner detector tracking system SILAB

SCT endcap

Outermost system uses gas-filled 4mm straws

 Contains 420k electronic channels. Transition radiation (TRT) gives particle ID

Intermediate system is a large silicon strip tracker (SCT)
 Four barrel layers and 9 disk layers with 61 m² silicon and 6.2M channels

Innermost system is a silicon pixel tracker

VERTE

SCT barrel

VERTH

- Radiation hardness
 - sensor dose of 10¹⁵ neutron eq/cm²
 - electronics 50 Mrad
- Technical Design Report specification
 - $r\phi$ resolution of 13 μ m
 - efficiency better than 97% at end of lifetime
 - provide modest resolution (6 bits) analog charge measurement (ToT)
- Given the 25 ns beam crossing rate at the LHC
 - must be able to assign each hit to the proper bunch crossing
 - must be able to store the hit information during the trigger latency time of ${\sim}100$ beam crossings
- Advantages of a pixel detector
 - Pattern recognition due to very low occupancy
 - Low noise through reduced capacitance

VERTE X06

Pixel detector

- Basic building block glued on a support/cooling structure
 - Sensor, 16 FE chips, controller chip, flex hybrid, services pigtail

- Design driven by radiation hardness requirement
 - n⁺ pixels in n-bulk (oxygenated Si) with moderate p-spray
 - 16.4 mm x 60.8 mm x 280 μ m , 46080 pixels (50x400 μ m²)

VERTE χ 06

Bump bonding

VERTE

- Bump bonds connect FE pre-amplifier to sensor pixel
- Two techniques, from different manufacturers :
 - In bumps by Selex (ex Alenia-Marconi Systems), Rome
- Bumping defects can be found before module assembly
 - production contract fixes a rejection at 0.3% faulty bumps
 - reworking techniques in place to recover FE
 - global yield after reworking is 94%

Read-out scheme

VERTE χ 06

- The Atlas Pixel detector

 Requirements, design, choices
- Module tests and detector integration
- Some issues
 - Potting, delamination, pipe corrosion, cables
- Present status and schedule

Module tests

- After assembly each module is tested extensively
 - includes thermal cycling and tests at -10°C (operation temperature)

basic tests are

- threshold and noise after threshold tuning
- in-time threshold (charge which exceed the discriminator threshold within 20ns)
- data taking with ²⁴¹Am: check if channels work, charge information obtained by time-over-threshold (ToT)

VERTE X06

Lab measurements I

Lab measurements II

Markus Cristinziani, Uni Bonn

15/34

Tests after irradiation

Extensive radiation studies at CERN PS, irradiation of 7 production modules to ATLAS lifetime dose ($2x10^{15} \text{ p/cm}^2 \approx 50\text{MRad}$).

VERTE χ 06

VERTE

Test beam results

- Test beam 2004 to characterize production modules
- **Radiation hardness**

Detector performance

irradiation (at 500V)

High rate tests passed

 $10 \ \mu m$ (after irradiation)

- Sensors almost fully depleted after 3 yrs high lumi with 600V bias
- Charge collection efficiency reduced to 80% (trapping)
- Lorentz angle decreases with increasing bias voltage $(15^{\circ}\rightarrow 5^{\circ})$

VER₁

Module ranking

- All modules assembled and tested at production sites
 - 1744 needed for detector

- Electrical tests establish ranking penalty

Excellent modules available for the critical innermost layer

- Barrel composed of
 - barrel frame (carbon fiber laminate)
 - staves
 - 13 modules
 - Shingled carbon-carbon support
 - All identical (except cabling)

 For integration two staves are linked by a unique cooling tube (bi-stave)

Pixel End Cap

Assembled at LBL and shipped to CERN for integration Sector assembly (1/8 of a disk): 6 modules are mounted on carbon-carbon plates, sandwiching the cooling pipe.

- The Atlas Pixel detector
 Requirements, design, choices
- Module tests and detector integration
- Some issues
 - Potting, delamination, pipe corrosion, cables
- Present status and schedule

VERTE

MCC Potting

- Wirebonds on front-end chips are potted
 - avoid resonant breaking of wires
- Also MCC potted as handling precaution
- Problems appeared during "burn in"
 - infant mortality
 - 10 cycles [-30°C;+30°C]
 - Observed MCC potting detaching, breaking wire bonds
 - Related to geometry, component surface
 - No problem on FE chips after long thermal cycling
- Action: stop potting MCCs and repair
 - Anyway not critical
 - Remove potting and re-bond modules in Bonn

potting

Stave delamination

- Delamination observed between CC Thermal Management Tile and Ωshaped carbon fiber
 - Gluing scheme
 - Ω-shaped cooling tube favors delamination by deformation and torque
 - increase of thermal impedance between tube and pixel module

• Solution: reinforcement by adding a peek collar

• Thermal performance is satisfactory after this modification

Pipe corrosion

• Serious concern (July 2005): corrosion of stave cooling pipes

- Ni-Al galvanic pair and moisture
 - bare pipe material (Al)
 - Ni plating used to allow for brazing of the pipe fittings
 - no proper drying procedure \rightarrow water
- already ~15% of pipes leaky

- experts consulted agreed on the need to change <u>all</u> the pipes
- Six months delay in schedule
 - repair the 43 (30%) loaded staves with a pipe-inside-the-pipe
 - production of new staves with new Al compound and laser welding
 - repair of bare staves (~100)

Insertion fix

- Pipe insertion fix to avoid corrosion of inner pipe
 - D-shaped pipe inserted, stycast adhesive, fittings glued
 - additional thermal impedance (~10%)
 - smaller hydraulic diameter of cooling circuit
 - extensive studies performed

- Staves are paired (bi-staves) and served by one cooling circuit. Tests with evaporative cooling indicate that:
 - (1 repaired + 1 new) stave can be cooled when dissipating 190W,
 i.e. can reach end-of-lifetime
 - Only outer barrel layer consists of these kind of bi-staves (~half dose than intermediate layer).

The low mass cable problem

- Barrel aluminum signal and power cables
 - 100 μm wire for signal
 - 300 μ m for power
 - 21 wires in a bundle
 - wire-bonded on a small PCB
- Defective cables discovered during integration
 - cable stressed during manipulation? \rightarrow strain relief
 - systematic check (visual inspection and electrical tests):
 - ~50% of the 2000 cables affected
 - cracks in insulation
 cause signal wire breaking

Cable problem solution

- Production process in Taiwan inspected
 - Wires are bent and immersed in 400°C NaOH for stripping
 - Excessive bend <u>and</u> high T can damage the insulator

- Problem caused ~3 months delay in already dense schedule
- Procedure corrected: now cable yield ~90%
- Expect all cables produced by October 1st

VERTE**X**06

- The Atlas Pixel detector

 Requirements, design, choices
- Module tests and detector integration
- Some issues
 - Potting, delamination, pipe corrosion, cables
- Present status and schedule

End cap status

- Both Pixel End Caps are not at CERN
 - Were fully assembled in LBL
 - dead channels at few per mil level
- Preparing for cosmic tests in November
 - test DAQ chain, services and software

Markus Cristinziani, Uni Bonn

Planned cosmics stand

34

Barrel integration

Layer 2 complete, layer 1 in progress

VERTE χ 06

Barrel integration

VERTE χ 06

- Pixel detector is well on track !
 - end caps are at CERN ready to be integrated
 - Layer2 fully equipped and clamped
- Present schedule foresees pixel ready on April 1st (no joke!)
 - Layer1 6 staves to go, clamping beginning of November
 - B-Layer clamping end of November

ATLAS will have a complete 3 hit pixel system, when recording the first LHC collisions

Summary

- After ~10years R&D the ATLAS pixel detector is nearly completed
- Test beam results and an extensive QC program makes us confident that the system will perform within specs

- A number of problems were tackled in a collaboration wide effort and solutions appear adequate
- Pixel will be integrated into ATLAS this April

VERTE χ 06