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Introduction and motivations
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Isospin symmetry

The formal Nf flavor QCD Lagrangian
N e v
LQE‘D = Z¢i(1(VuD“) — m)i — ZG;” Gy
i=1
in the case of degenerate up and down quarks, is invariant under SU(2)
rotations in the (u-d) flavor space.

Isospin breaking (IB) has two sources

m, # mq (strong 1B)

Qu # Qq (EM IB)
The separation makes sense classically. Renormalization effects induce a
mass gap, even with bare degenerate masses (— scheme dependence).

IB is responsible for the neutron-proton mass splitting, whose value
played an important role in nucleosynthesis and the evolution of

stars [Bmw, Science 347 (2015)].
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More motivations

The 2021 FLAG review [arXiv:2111.09849] gives

f, = 130.2(8) MeV ,  fix = 155.7(7) MeV [N =2 + 1]
fp =212.0(7) MeV ,  fp, =249.9(5) MeV  [Nf =2+ 1+ 1]

obtained in the isospin limit. EM corrections can be included

fO”OWing [Phys.Rev. D91 (2015) no.7, 074506 and Phys.Rev.D 103 (2021) 1, 014502 (Rome-Soton)]

These hadronic parameters are relevant for the extraction of CKM
elements from purely leptonic decays. In that game the error is
dominated by experiments, as opposed to the semileptonic

CASE€. [arXiv:1811.06364 (Rome-Soton)]
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Gauge symmetry with PBC

Periodic boundary conditions (PBC)

Y(x+ L) =v(x),  Aulx+ LD) = Au(x)

The Lagrangian with one fermion of charge 1 (and e = 1) invariant for

Au(x) = Aulx) +9uA(x)
bx) = eNIy(x)
Px) = Plx)e
A(x) does not need to be periodic
ANx+ L,p) = N(x) + 27r,,

The quantization in r, follows from the periodicity of the fermions. In
general

A(x) = N°(x) + 27 <{)u Xy

with A%(x) periodic.
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Gauge symmetry with PBC

Let us consider the “large gauge transformations” defined by A° =0

Aux) = Au) 20 () = p(x)e (B
"

they act as a finite volume shift symmetry on the gauge fields.

Considering now the correlator (¥( T /4,0)%(0,0)), it is clear that it
vanishes as a consequence of invariance under large gauge
transformations (choose romod(4)=2).

OK, let's gauge away the shift symmetry and require the 0-mode of A,
to vanish

/ d*xA,(x) =0

that is a non-local constraint, which cannot be imposed through a local
gauge-fixing | Not a derivative one at least .... We like those because
gauge-independence of physical quantities is manifest.
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Gauss law with PBC and workarounds

Another way to look at the problem

Electric field of a point charge cannot be made periodic and continuous

NANZ
Gl .

Q= / d*xp(x) = / d*x0;E;(x) =0

Introduce uniform, time-independent background current ¢, then

/d3xp /d3xco =0,

which allows to have a net charge.
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Gauss law with PBC and workarounds

Promoting ¢, to a field, the Lagrangian density is modified by a term

A [ dy )

whose EoM is [ d*xA,(x) = 0. When enforcing this on each conf (not
just on average) one obtains the QED; prescription used first in [puncan et

al..Phys.Rev.Lett. 76 (1006)]. It IS
e non-local
e without a Transfer matrix

An Hamiltonian formulation can be recovered adopting the QED,
preSCriptiOn [Hayakawa and Uno, Prog.Theor.Phys. 120 (2008)], requiring

/ PxA,(t,x) = 0

(Imagine coupling a uniform but time-dependent current, as for charged
particles propagators).
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Gauss law with PBC and workarounds

Both prescriptions
e Introduce some degree of non-locality (issues with renormalization 7
O(a) improvement ? Mixing of IR and UV ?)
e Remove modes, which in the electroquenched approximation, would
be un-constrained and cause algorithmic problems (wild fluctuations)

QED; is to be preferred as it has a Transfer matrix. The 'quenched’
modes should not play a role in the infinite-vol dynamics (fields vanish at
infinity), so it is a matter of finite volume effects (see for example [pavoud
et al,, arxiv:asi0.0s023] for studies in PT and numerically for scalar-QED).
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Gauss law with PBC and workarounds

Another natural approach:
the quantization of the shift symmetry was due to BC for fermions. How
about changing it tO: [Lucini et al., JHEP 1602 (2016) 076] (C* BC)

Aux+ L) = —Au(x) = AS(x)
x+ L) = $C(x)=CY (x)
Px+L,0) = —¢(x)TC with CT’yMC:—'yMT

Completely local, no zero-modes allowed, however at the price of
violations of flavor and charge conservation (by boundary effects).

Also, SU(3) dynamical configurations need to be generated again.

It is useful to look at finite volume corrections, e.g. to point-like particles
at O(a) (l/L and 1/1_2 universal) [Lucini et al., JHEP 1602 (2016) 076]
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Gauss law with PBC and workarounds

A PT—inspired approach [RM123, JHEP 1204 (2012) 124, Phys.Rev. D87 (2013) no.11, 114505]
Simpler in the case of strong IB:

L = Lyin+Ln

= Liin + m“#w(uu +dd) — wmu — dd)

= Liin + Mua Gq — Amaq Grq ) f Do O(1+ Am“‘],g) e~ %o _ (0)o + Amyg <59§>0
I Dé (14 AmygS)e 1+ Amyq (S)o

= Lo—Amul, = (O + Amua (08),

Similarly, for QED corrections, one inserts J,(x) (and possible lattice
tadpoles) over 4dim vol in correlators evaluated in isospin-symm QCD.
One does not compute something tiny rather, derivatives wrt o and
Amyg, which may be O(1)
Only renormalization in QCD needs to be discussed
Still a zero-mode prescription for the explicit photon propagator is
needed. With some caveats, the approach can be combined with the
infinite-volume propagator [x. Feng and L. Jin, Phys.Rev.D 100 (2019) 9, 094509].
Anyhow, much better control as the computation is fixed order in «.
— The expansion produces quark-disconnected diagrams (=~ those

neglected in electroquenched). 11
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Massive QED

1 1
Leep,, = ZF/EV + EmiA,i + L = Lproca + Lf

is renormalizable by power counting once the Feynman gauge is
imposed through the Stiickelberg mechanism [see book by Zinn-Justin]

it is local, softly breaks gauge symmetry and has a smooth m., — 0
limit.

Clearly the shift-transformation is not a symmetry anymore. The
mass term acts as an extra non-derivative gauge-fixing.

It introduces a new IR scale on top of L. First one should take
L — oo and then m, — 0.

Finite volume corrections are (exponentially) small, as long as
myL >4 and m, < m,.

12
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The mass term introduces a Gaussian damping factor for the zero mode
1,272 1.2 A2
e_Em“fAu(o) e 2My ZP#O AL(p)

in the path integral. The zero-mode vanishes on average and has
variance m;l (so in lim m, — oo one smoothly recovers QEDT;).

The fluctuations of the different modes

1
0 ~ ——— in particular o N —
Au(p) p2 + m'2y p A, (0) m%
allow to distinguish two regimes (smallest non-zero lattice p = 27)

e m, << 2% i.e. Lm, << 27. The quantum fluctuations are

dominated by the zero-mode, which needs to be treated separately
(e, regime ).
e m, >> 2% i.e. Lm, >> 27. All modes have similar fluctuations (p,

regime ).

13
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Finite size effects

Finite size effects

In the p., regime effects are exponential in m. L (M. Endres et al., Phys.Rev.Lett. 117
2016) 1. Using non-relativistic QED:

MO = 271aQ*m, Iy (m, L)

in terms of Bessel functions. NLO in the effective theory also available.
The computation is very similar to what is done in xPT, e.g. 1. Biinens <t al.,

JHEP 1401 (2014) 019].

In the e, regime 0-modes contribute and one may expect power-law FSE.

However, a conf. with a 0-mode A, (0) = ¢, has a weight

e—%mﬁcuL-”T

which vanishes if any of the spatial or temporal extents goes to oc.
= We expect power-like FSE (or any 0-mode effect) to be o (L3T)~!

14
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Finite size effects

Tree-level computation in scalar QED in €, regime p. 7. Tsang, A. Shindler et al.,

LATTICE21, arXiv:2201.03251]

Au(x) =qu(x)+ B, , with /d4xq#(x) =0
keeping only the non-interacting (with g,(x)) part of the Lagrangian

M2(p) = (pu + €B.)* + m’

for B=0, Ta(p)=(po+eBo)’+wp with wh=m?+ e?B|?

Integrating (non-perturbatively) over B,,, the 2-pt function reads

ipot
0] (£)Po(0)[0) d4B"mBV‘/d °
005(1)0a(0)0) =2 [ d*Be Y (oo T B T

—wpt

/d3B e_""2|3\2‘/4 /dBo e—§m§33v4e—ie30t

ZCUB

15
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Finite size effects

Fourier transform of a Gaussian is a Gaussian ....

242 —wpgt

e T am2 vy d3B e——m2\5|2V4
20.)5

15t non-trivial effect of zero mode: there is a universal term in the
. 2 . . .
correlator falling as e™*". The effect is V4 suppressed (in the effective

maSS), as eXpeCted [M. Endres et al., Phys.Rev.Lett. 117 (2016) and A. Patella, PoS LATTICE2016

(2017) 020].

The remaining integral by saddle point (exact for V4 — )

279 non-trivial effect of zero mode: there is a O(1/V,) FSE correction to
the hadron mass.

16
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Finite size effects

Putting things together

T

al2m310 pion: X =24, T=64, aM),q =0.1885, ML =4.52
: : : : . —_7ZM
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m,L

17
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Finite size effects

al2m310 nucleon: X =24, T=64, aMy.q = 0.6660, ML =15.98

102 \

04} 1
9 03} Lt et
~ LT
o L
202t e X ]
X x
01r ><><>< 7]
0.0 G L L L L L
0.0 0.5 1.0 . 2.0 2.5 3.0 3.5 4.0
m,L

18



Massive QED

0000080

Finite size effects

al2m310XL pion: X =48, T=64, aMy,a =0.1885, ML =9.05
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Finite size effects

We conclude we want
myL>15

Suppose at the same time we want

my

m, < —
v n

for m, — 0 extrapolation. All together this means
m;L > 1.5n

with the lower bound m, L ~ 4 from QCD FSE.
So we need to understand what n we need to safely extrapolate in m.,.
FI’Om [M. Endres et al., Phys.Rev.Lett. 117 (2016) ], the |ead|ng eﬂ:ect |S |inear in m,y

[e%
A,YMLO — _EQQm’Y

20



Results

Results

Massive QED
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Mixed action SetUp [E. Berkovitz et al.,Phys. Rev. D 96, 054513 (2017)]:
N¢ =24+ 141 HISQ in the sea
Md&bius domain wall in the valence (after gradient flowing confs)

a12m310 and a12m310XL with T /a =64 and L/a = 24 and 48 resp.

Electroquenched approximation with Feynman gauge and compact
formulation

Preliminary account in [J. T. Tsang, A. Shindler et al., LATTICE21, arXiv:2201.03251]

Paper(s) in preparation, with measurements collected on a12m130 ,
al2m220and a09m310 to explore chiral and continuum limit.

21



Results

Dispersion relation E2 = m? + p?

As argued in (a. patella, Pos LATTICE2016 (2017) 020], iN the limit m,, — 0 at finite L

one gets
H = 2ms V,
lim C(t,p) xe *™"s
m,—0
1.e
0.03 al2m310 «
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Massive QED
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(¥(t,0)(0)3q.0) 11 (1+ O(m?y))

. some stiffness to external momenta. We are not in that regime:
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Results

Still, we see zero-mode effects

al2m310 al2m310XL
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Those are universal and can be subtracted though.
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Results

al2m310XL: (QCD+QED)-QCD = *
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Results
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al2m310XL: (QCD+QED)-QCD p *
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Massive QED
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: - +
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al2m310: (QCD+QED)-QCD = *
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al2m310: (QCD+QED)-QCD p*
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Conclusions and outlook

- We have shown that QED), is a viable approach to non-perturbative
QED on the lattice with the goal of high precision. We are
systematics dominated (error from FSE).

- We completed the due diligence by looking at the spectrum.

- We discussed the interplay between m, and L and we empirically
obtained a rule myL > 1.5 and m; > 4m,, for FSE and m,-effects to
be under control. All together we need m, L = 6.

- Still, in our simulations we see residual effects of zero-modes, e.g.
FSE of O(1/V,).

- Short run: We plan to include strong-isospin breaking using the
'perturbative’ RM123 method.

- Long run: QED corrections to form-factors, starting with ga.

32
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Short run: Dashen’s theorem:
(AMZ)Y = (AME)
with AM% = M%, — M,. Violations are parameterized by

(AM2 — AM2)Y
AM2

€ =

FLAG 21 gives ¢ = 0.79(6) for N =2+ 1+ 1 from 3 computations
(RM123, MILC and BMW).

In order to address that we need to define the isospin symmetric point at
« 75 0. In [ A. Bussone et al., Pos LATTICE2018 (2018) 2031 We defined a scheme for that
by requiring

Ms+ = Ms—

33
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. small valence retuning needed
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