Real-time simulations using complex Langevin **Daniel Alvestad, University of Stavanger Collaborators: Rasmus Larsen and Alexander Rothkopf**

Real-time simulations and the sign problem

- Real-time simulations (Minkowski): $\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\phi \ \mathcal{O}(x) e^{iS[\phi]}$
 - Schwinger-Keldysh contour
 - Thermal equilibrium
- Complex Feynman weight

Real-time simulations and the sign problem

- Real-time simulations (Minkowski): $\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\phi \mathcal{O}(x) e^{iS[\phi]}$
 - Schwinger-Keldysh contour
 - Thermal equilibrium
- Complex Feynman weight

$$S_{E}$$

$$S_{E$$

Real-time simulations and the sign problem

- Real-time simulations (Minkowski): $\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\phi \mathcal{O}(x) e^{iS[\phi]}$
 - Schwinger-Keldysh contour
 - Thermal equilibrium
- Complex Feynman weight

Importance sampling not possible

$$S_{E}$$

$$S_{E$$

Complex Langevin, Lefschetz thimbles, Tensor networks,....

Langevin equation

 Langevin equation (Stochastic Differenti

Final equation)

$$\frac{d\phi}{d\tau_L} = -\frac{\delta S[\phi]}{\delta \phi(x)} + \eta(x, \tau_L) \text{ with}$$

$$\langle \eta(x, \tau_L) \rangle = 0, \quad \langle \eta(x, \tau_L) \eta(x', \tau'_L) \rangle = 2\delta(x - x')\delta(\tau_L - \tau'_L).$$
Find (Real)

$$\frac{\partial}{\partial t} \Phi(x, t) = \sum_{i} \frac{\delta}{\delta \phi_i} \left[\frac{\delta}{\delta \phi_j} + \frac{\delta S[\phi]}{\delta \phi_j} \right] \Phi(x, t) = -H_{\text{FP}} \Phi(x, t)$$

Fokker-Planck equat

$$\frac{\partial}{\partial t}\Phi(x,t) = \sum_{j} \frac{\delta}{\delta\phi_{j}} \left[\frac{\delta}{\delta\phi_{j}} + \frac{\delta}{\delta\phi_{j}} \right]$$

• Equilibrium distribution of FP $\rightarrow e^{-S[\phi]}$

Fokker-Planck Langevin

$$\langle \mathcal{O} \rangle = \lim_{\tau_L \to \infty} \int D\phi \ \Phi(\phi, \tau_L) \mathcal{O}(\phi) = \lim_{T \to \infty} \int_0^T d\tau_L \ \mathcal{O}(\phi(\tau_L))$$

Real-time complex Langevin

- Complexifying fields: $\phi \rightarrow \phi^R + i\phi^I$
- Scales linear with size of problem

Complex Langevin equation

$$\frac{d\phi}{d\tau_L} = i \frac{\delta S[\phi]}{\delta \phi(x)} + \eta(x, \tau_L)$$

Regulator

Regulate integral $\langle \mathcal{O} \rangle = \frac{1}{Z} \left[D\phi \ \mathcal{O}(x) e^{iS[\phi]} \right]$

$$S_1$$
 Re(t)
 S_2

Convergence problem

Understand convergence problem of the complex Langevin

Real-time complex Langevin: Benchmark problem

 Strongly coupled quantum anharmonic oscillator with $m = 1, \lambda = 24, \beta = 1$ [Berges, Borsanyi, Sexty, Stamatescu (2007)]

 $S = \int dx_0 \left\{ \frac{1}{2} \left(\frac{\partial \phi}{\partial x_0} \right)^2 - \frac{1}{2} m \phi^2 - \frac{\lambda}{4!} \phi^4 \right\}$ Extending the real-time contour Berges, Borsanyi, Sexty, Stamatescu (2007) C Re Schrödinger: Re S_E C_{γ} $-i\beta$ Im **Remove forward and** backward tilt 0.4 0.5 0.6 0.7 0.8

Stable solver and Regulator

Simple overview of SDE solver

General Euler-Maruyama Scheme:

$$\phi_j^{\lambda+1} = \phi_j^{\lambda} + i\epsilon_j \left[\theta \frac{\partial \lambda}{\partial t} \right]$$

- Explicit ($\theta = 0.0$): Overshooting
- Implicit ($\theta = 1.0$): Undershooting
- Semi-implicit ($\theta = 0.5$): Stable and close to the exact solution
- For all $\theta \ge 0.5$ we get rid of runaways (Unconditionally stable)

Simulations done with the DifferentialEquations.jl library in Julia

Regularisation of real-time contour

- Old way: Explicit scheme + tilting (Adaptive step-size)
- Implicit solver: No runaway solutions
- Regularisation; Infinitesimal damping term: $\bar{S} = S + iR(\phi, \epsilon)$

$$R = \frac{1}{2}\epsilon\phi^2$$

- Tilted contour
- Implicit scheme

Lattice 2021, 29.07.2021

Dynamics in thermal equilibrium

- Strongly coupled quantum anharmonic oscillator with m = 1, $\lambda = 24$ (same as in Berges, Borsanyi, Sexty, Stamatescu, 2007)
- Regulator: $\theta = 0.6$, Contour: $\beta = 1.0$, $x_0^{max} = 0.5$
- $G_{++}(\xi) = \langle \phi(0)\phi(\xi) \rangle \langle \phi(0) \rangle \langle \phi(\xi) \rangle$ for $\xi \le 0.5$
- $G_E(\xi) = \langle \phi(0)\phi(\xi) \rangle \langle \phi(0) \rangle \langle \phi(\xi) \rangle$ for $\xi \ge 1$

Non-Equilibrium dynamics

Gaussian initial density matrix with \bullet

 $\langle \phi_0 \rangle = 1, \langle \dot{\phi}_0 \rangle = 0, \langle \phi_0 \phi_0 \rangle = 1, \langle \dot{\phi}_0 \dot{\phi}_0 \rangle = \frac{1}{\Lambda}$ (Berges, Borsanyi, Sexty, Stamatescu, 2007)

- Small coupling $\lambda = 1$ and regulator $\theta = 0.6$
- Full access to G_{+-} and $G_{-+}(x_0) = \langle \phi_2 \phi(x_0) \rangle \langle \phi_2 \rangle \langle \phi(x_0) \rangle$ •

Lattice 2021, 29.07.2021

Non-Equilibrium dynamics

Gaussian initial density matrix with \bullet

 $\langle \phi_0 \rangle = 1, \langle \dot{\phi}_0 \rangle = 0, \langle \phi_0 \phi_0 \rangle = 1, \langle \dot{\phi}_0 \dot{\phi}_0 \rangle = \frac{1}{4}$ (Berges, Borsanyi, Sexty, Stamatescu, 2007)

- Small coupling $\lambda = 1$ and regulator $\theta = 0.6$
- Full access to G_{+-} and $G_{-+}(x_0) = \langle \phi_2 \phi(x_0) \rangle \langle \phi_2 \rangle \langle \phi(x_0) \rangle$ •

Lattice 2021, 29.07.2021

Real-time complex Langevin

Numerics now under control

Daniel Alvestad

Complex Langevin equation

$$\frac{d\phi}{d\tau_L} = i \frac{\delta S[\phi]}{\delta \phi(x)} + \eta(x, \tau_L)$$

Regulator

Regulate integral $\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\phi \ \mathcal{O}(x) e^{iS[\phi]}$ S_1 Re(t) S_2

Convergence problem

Understand convergence problem of the complex Langevin

Convergence to the wrong solution problem

Problem of wrong convergence

- Taking $\Delta \tau \rightarrow 0$ (Langevin time-step) not solution
- Eigenvalues of Fokker-Planck equation
 - Fokker-Planck equilibrium distribution not e^{iS}

- Fixing the problem
 - Boundary terms, Gauge Cooling, Dynamical stabilisation
 - Modification to CLE
 - Coordinate Transformations
 - Kernels

 $-D^a_{x,\nu}S[U] \rightarrow -D^a_{x,\nu}S[U] + i\alpha_{DS}M^a_x$

- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kerneled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$ •
- Free theory propagator:

$$i\frac{\partial S}{\partial \phi} = iM\phi, \quad K = iM^{-1}, \quad K i\frac{\partial S}{\partial \phi} = -\phi$$

$$d\phi = -\phi + \sqrt{iM^{-1}}dW$$

Free theory No kernel

$$\left[\frac{\phi}{\phi}\right) d\tau_L + \sqrt{K[\phi]} dW$$

- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kerneled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$ •
- Free theory propagator:

$$i\frac{\partial S}{\partial \phi} = iM\phi, \quad K = iM^{-1}, \quad K i\frac{\partial S}{\partial \phi} = -\phi$$

$$d\phi = -\phi + \sqrt{iM^{-1}}dW$$

$$\left[\frac{\phi}{\phi}\right) d\tau_L + \sqrt{K[\phi]} dW$$

- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kerneled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$ •
- Free theory propagator:

$$i\frac{\partial S}{\partial \phi} = iM\phi, \quad K = iM^{-1}, \quad K i\frac{\partial S}{\partial \phi} = -\phi$$

$$d\phi = -\phi + \sqrt{iM^{-1}}dW$$

$$\left[\frac{\phi}{\phi}\right] d\tau_L + \sqrt{K[\phi]} dW$$

-0.1

-0.2

- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kerneled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$ •
- Free theory propagator:

$$i\frac{\partial S}{\partial \phi} = iM\phi, \quad K = iM^{-1}, \quad K i\frac{\partial S}{\partial \phi} = -\phi$$

$$d\phi = -\phi + \sqrt{iM^{-1}}dW$$

$$\left[\frac{\phi}{\phi}\right] d\tau_L + \sqrt{K[\phi]} dW$$

- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kerneled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$ •
- Free theory propagator:

$$i\frac{\partial S}{\partial \phi} = iM\phi, \quad K = iM^{-1}, \quad K i\frac{\partial S}{\partial \phi} = -\phi$$

$$d\phi = -\phi + \sqrt{iM^{-1}}dW$$

Systematic scheme to construct kernels

Daniel Alvestad

$$\left[\frac{\phi}{\phi}\right] d\tau_L + \sqrt{K[\phi]} dW$$

0.3

0.2

0.1

0.0

-0.1

-0.2

Construct kernel

- Can we find a kernel by using prior knowledge about the Complex • Langevin and the model
- Known information
 - L^{Sym} : Symmetries of the model, ex. $\langle \phi^n \rangle = \text{const.}$ (known from Euclidean simulation)
 - L^{Eucl}: Euclidean part of real-time contour
 - L^{BT} : There should be no boundary terms
- Minimising using the above loss functions require the which includes propagating through the whole simula
 - Possible due to auto-differentiation and sensitivity analysis
 - Currently too expensive due to highly stiff problem (real-time)

e derivative
$$\frac{d\phi}{dK}$$
 ation.

Local loss function

Boundary terms accumulate with too slow falloff in the distribution.

• Minimising the drift out from origin ($D = K \frac{\delta S}{\delta \phi}$)

$$L_{D} = \frac{1}{N} \sum_{i}^{N} \left| D(\phi_{i}) \cdot (-\phi_{i}) - |D(\phi_{i})| |\phi_{i}| \right|^{2}$$

- Evaluate the gradient $\nabla_{K} L_{D}(\{\phi\})$ using autodifferentiation
- Use L^{Sym} , L^{Eucl} , L^{BT} to test result from minimising L_D
- Minimising L_D same as minimising boundary terms: L^{BT}
- Holomorphic: Correctness criterion

Updating the kernel

Make configuration using $K_0 = I$: $\{\phi_i^0\}$ $d\phi = K_0 \,\partial_\phi S[\phi] + \sqrt{K_0} dW$

Update kernel based on gradient of the loss function $\nabla_{K} L_{D}(\{\phi^{0}\})$

Loop N times (index k)

Make configuration using K_k : $\{\phi_i^k\}$ $d\phi = K_k \,\partial_\phi S[\phi] + \sqrt{K_k} dW$

Update kernel based on gradient of the loss function $\nabla_{K} L_{D}(\{\phi^{k}\})$

Measure L^{Sym} , L^{Eucl} , L^{BT}

Pick out the iteration with the smallest $L^{\text{Sym}}, L^{\text{Eucl}}, L^{\text{BT}}$

- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$

- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$

- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$

- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$

Connection with thimbles

- Lefschetz thimbles: $\frac{d\phi}{d\tau} = \frac{\overline{dS[\phi]}}{d\phi}$
- Simplest model: $S = \frac{1}{2}ix^2$

Connection with thimbles

- Simplest model: $S = \frac{1}{2}ix^2$
- Models with more than one critical point $S = 2i\phi^2 + \frac{1}{2}\phi^4$

Connection with thimbles

Daniel Alvestad

$L_{\text{True}} = |\langle x \rangle - \langle x \rangle_{\text{True}}| + |\langle x^2 \rangle - \langle x^2 \rangle_{\text{True}}|$

Nordic Lattice 2022

18/16

Boundary terms and kernels

- Minimising L_D minimise the boundary terms:
 - $B_1(Y) = \left\langle L_c \mathcal{O}(x+iy) \right\rangle = \left\langle (\nabla_x + \nabla S) K \nabla_x \mathcal{O}(x+iy) \right\rangle_V$
- No boundary terms \neq true solution when using a kernel?

$$S = \frac{1}{2}\sigma x^{2} + \frac{\lambda}{4!}x^{4}$$
$$\sigma = -1 + 4i, \lambda = 2$$

$$L_{\text{True}} = |\langle x \rangle - \langle x \rangle_{\text{True}}| + |\langle x^2 \rangle - \langle x^2 \rangle|$$

Summary and outlook

- Implicit scheme; Stabilise and regularise real-time CL
- Goal: extending real-time convergence CL
- Kernel controlled complex Langevin
 - No convergence problem for free scalar theory
 - Learning kernel in thermal ϕ^4 theory
- Kernel as appropriately parameterised function
 - Field dependent kernel
 - Generalise to any real-time
- Improved loss function including more than one of the critical points

Tilted contour

Daniel Alvestad

Learning free theory kernel

- Able to find kernel when only one critical point at the origin
- Kernel form $K = e^{A+iB}$

Field dependent kernel

Need to add extra derivative term

 $\frac{d\phi}{d\tau_0} = K[\phi$

$$\phi]\frac{\delta S[\phi]}{\delta \phi} + \frac{\partial K[\phi]}{\partial \phi} + \sqrt{K[\phi]}\xi$$

$$x^{2})e^{-i\theta_{\sigma}} + \frac{1}{|\lambda|}(1 - f(x^{2}))e^{-i\theta_{\lambda}}$$

 $f(x^2) = e^{-x^2(-\sigma/\lambda)}$

Nordic Lattice 2022

1

0

-3

-3

-2

 $^{-1}$

3

2

Construct kernel

- Can we find a kernel by using prior knowledge about the Complex Langevin and the model
- In thermal ϕ^4 we know:
 - $\langle x \rangle = 0$ and $\langle x^2 \rangle = \operatorname{Re} \langle x^2 \rangle = \operatorname{const.}$
 - Euclidean correlation $G(\xi)$ for $\xi \geq 2$

• Minimize
$$L(K) = \sum_{i} ||O_i - \langle O_i(K) \rangle||^2$$

- Matrix kernel, starting out with $K_0 = I$
- Update K_n based on $\nabla L(K_n)$
- Contour: $\beta = 1.0$, $x_0^{\text{max}} = 1.0$

Construct kernel

- Can we find a kernel by using prior knowledge about the Complex Langevin and the model
- In thermal ϕ^4 we know:
 - $\langle x \rangle = 0$ and $\langle x^2 \rangle = \operatorname{Re} \langle x^2 \rangle = \operatorname{const.}$
 - Euclidean correlation $G(\xi)$ for $\xi \geq 2$

• Minimize
$$L(K) = \sum_{i} ||O_i - \langle O_i(K) \rangle||^2$$

- Matrix kernel, starting out with $K_0 = I$
- Update K_n based on $\nabla L(K_n)$
- Contour: $\beta = 1.0$, $x_0^{\text{max}} = 1.0$
- Field dependent kernel

