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SU(N) topological charge and sphalerons 2 / 16

Consider the charge density

χ(x) =
g2

16π2
TrFµνF̃

µν

• Topological: Q(t) ≡
∫
dt′

∫
d3x χ(t′,x) = NCS(t)−NCS(0),

with NCS the Chern-Simons number

• Thermal fluctuations induce transitions between vacua at
different NCS. The sphaleron rate (diffusion rate of NCS) is

Γsph = lim
t,V→∞

〈Q(t)2〉
V t

∝ α5T 4

Figure: hep-ph/0609145



Why we care about sphalerons 3 / 16

• Sphalerons mediate baryon number violation in SU(2)L:
∂µJ

µ
B ∝ χ(x). For electroweak theory, weak-coupling methods

are reasonably accurate and the Γsph is known arXiv:1404.3565

• In QCD: Chirality violation in heavy ion collisions. arXiv:0711.0950

However, the SU(3) rate at physically relevant coupling is less
well understood

• Axion dynamics in thermal medium: Consider L ⊃ −φχ/fa.
Then real-time fluctuations of the topological charge induce a
friction term to axion EOM. For slowly varying φ, the friction
coefficient is given by Γsph. McLerran, Mottola, Shaposhnikov, Phys.Rev.D

43 (1991)

• etc...



Classical simulations and the UV problem 4 / 16

• Computing a nonperturbative Minkowskian quantity like Γsph is
hard! But momentum modes with � πT (including sphalerons)
are Bose enhanced, and we can use classical (Hamiltonian)
simulations.

• Classical thermodynamics has Rayleigh-Jeans UV divergences.
In simulations, the cutoff ω ∼ 1/a is explicit and the classical
theory can be used as an effective description, but the
a → 0ălimit cannot be taken!

• Time scale of sphaleron transitions, tsph ∼ α2T , is sensitive to
damping from hard thermal modes (scales & T ) arXiv:hep-ph/9609481

• On lattice these are cut at 1/a and one instead has tsph ∼ α2T 2a
=⇒ rate itself is Γsph ∼ α5T 5a



Scaling of classical Γsph 5 / 16

Figure: arXiv:hep-ph/9906259

There is also a logarithmic correction, Γ ∼ α5T 5a log(ag2T )
hep-ph/9801430



Final comments on classical methods 6 / 16

• For extreme weak coupling 1/(log(1/g)) � 1 an effective
Langevin method is possible with finite a → 0 limit (Bödeker
EFT)

• The EFT is applicable for the electroweak sphaleron rate, but for
QCD Γsph its validity is questionable arXiv:1011.1167

=⇒ Classical Hamiltonian approach is still motivated at least
for qualitative studies

• This work: Revisit the Hamiltonian approach in SU(2), SU(3)
with a slight twist
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Time correlations of the charge density 8 / 16

• The diffusion rate Γ is related (by a Green-Kubo relation) to a
time-symmetric 2-point function: arXiv:hep-th/0205051

Cs(t) =

∫
d3x

〈1
2
{χ(t,x), χ(0,0)}

〉

Cs(ω) =

∫ ∞

−∞
dt eiωtCs(t), Γsph = lim

ω→0
Cs(ω).

• Sometimes also the ω 6= 0 transform is interesting, e.g. in warm
axion inflation the friction really depends on Cs(ω) Laine, Procacci,

JCAP 06 (2021)

• Ultimately, our goal is to study nonperturbative features of the
correlator at non-vanishing ω � T . Focus on SU(2) and SU(3)



Choosing the observable 9 / 16

• To measure χ(t,x) we need a lattice counterpart of TrFµνF̃
µν .

We use
igFjk = [Qjk(x)−Qkj(x)] /8a

where Qjk is a 2× 2 “clover”

• This definition has correct IR properties, but is not topological
due to field discontinuities at the lattice scale

• In earlier studies of Γsph the gauge configurations are smoothed
with gradient flow and coarse-grained before calculating the
charge (or NCS) hep-ph/9805264

• A smoothed correlator is not the same object that affects e.g.
axion evolution, so we will not use this approach =⇒ our
observables are different



Lattice setup 10 / 16

Partition function in A0 = 0 gauge:

Z(cl) =

∫
DUiDEi δ(G) exp

{
− 1

ag2T

∑
x

[∑
i,j

Tr (1− Pij) +
∑
i

Tr E2
i

]}
,

i.e. Kogut-Susskind formulation in the ~ → 0 limit.

• Ei is the “electric field”, Ei ∈ su(N)

• The δ(G)ăenforces Gauss’ law:

G(x) =
∑
i

[
Ei(x)− U †

i (x− ai)Ei(x− ai)Ui(x− ai)
]

• Our algorithm for generating field configurations satisfying
G = 0 is from G. Moore, Nucl.Phys.B 480 (1996)



Generating the time dependence 11 / 16

• Classical EOM (with leapfrog, temporal spacing at = 0.02a):

Ea
i (x+ at0) = E(x) + 2

at

a

∑
j 6=i

ImTrT a

{
Pji

(
x+

at0

2

)
+ P−ji

(
x+

at0

2

)}

Ui

(
x+

1

2
at0

)
= exp

[
i
at

a
Ei (x)

]
Ui

(
x− 1

2
at0

)

• The simulation in practice: generate a configuration from the
thermal ensemble, evolve it with the EOM to measure χ(t),
repeat. . .
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Integrating the Cs(t) correlator 13 / 16
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• Turns out that our construction of Γsph =
∞∫

−∞
dt Cs(t) has

delicate UV/IR cancellations

• In practice we can integrate only up to some t = tmax

=⇒ ăneed to choose large enough tmax that the cancellations
stabilize



SU(2) comparison with arXiv:hep-ph/9906259 14 / 16
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At large ag2T , the results differ because the UV physics is treated
differently.
If the IR is done properly, we expect Γsph ∼ α5T 5aăor
∼ α5T 5a log(ag2T ) scaling at weak coupling. We observe much
more log-dominated scaling than the old results



SU(3) comparison 15 / 16
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Compare with G. Moore, M. Tassler, JHEP 02 (2011). Qualitatively
similar to the SU(2) case.
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• We have studied the statistical real-time correlator of topological
charge density using classical simulations of SU(2)ăand SU(3)

• The sphaleron rate can be directly extracted from the correlation
function without the need to smooth out UV fluctuations.

• Our results for Γsph at small ag2T are in rough qualitative
agreement with old results that use UV smoothed fields. We
expected more linear scaling, so questions remain:

• Are we still at too large ag2T ?

• Are there other IR effects apart from sphalerons that
contribute to C(t)?

• . . .



Finite size effects (backup) 16 / 16
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