Finite-Size Effects of the HVP Contribution to the Muon g - 2 with C^{*} Boundary Conditions

2022-08-24 Sofie Martins, University of Southern Denmark In collaboration with A. Patella, Humboldt University Nordic Lattice Meeting, University of Helsinki

Outline

Motivation

Finite-Size Effects in pure QCD

Results and Conclusion

C* Boundary Conditions Reduce FV Effects

[Kronfeld and Wiese 1991; Polley and Wiese 1991]

Muon g-2

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへぐ

HVP Contribution

Figure: [Lehner and Meyer 2020]

Figure: [Colangelo et al. 2022]

Time-Window Observables

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Time-Window Observables

Consistency checks for intermediate-time window or windows of different hadronic decay channels

[Lucini et al. 2016] $\Psi_f(x + L\hat{\mathbf{e}}_i) = \Psi_f^{\mathrm{c}}(x) = C^{-1}\bar{\Psi}_f^{\mathrm{T}}(x)$ $\bar{\Psi}_f(x + L\hat{\mathbf{e}}_i) = \bar{\Psi}_f^{\mathrm{c}}(x) = -\Psi_f^{\mathrm{T}}(x)C$

[Lucini et al. 2016] $\Psi_f(x + L\hat{\mathbf{e}}_i) = \Psi_f^{\mathrm{c}}(x) = C^{-1}\bar{\Psi}_f^{\mathrm{T}}(x)$ $\bar{\Psi}_f(x + L\hat{\mathbf{e}}_i) = \bar{\Psi}_f^{\mathrm{c}}(x) = -\Psi_f^{\mathrm{T}}(x)C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへ⊙

BC violate charge & flavor conservation

BC violate charge & flavor conservation

$$A_{\mu}(x+L\hat{\mathrm{e}}_i)=A^{\mathrm{c}}_{\mu}(x)=-A_{\mu}(x)$$

Estimator HVP (zero-momentum projection?):

$$G(x_0|T,L) = -\frac{1}{3} \int_{V_L} \langle j_k(x) j_k(0) \rangle_{T,L}$$
(1)

Estimator HVP (zero-momentum projection?):

$$G(x_0|T,L) = -\frac{1}{3} \int_{V_L} \langle j_k(x) j_k(0) \rangle_{T,L}$$
(1)

Estimator HVP (zero-momentum projection?):

$$G(x_0|T,L) = -\frac{1}{3} \int_{V_L} \langle j_k(x) j_k(0) \rangle_{T,L}$$
(1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

• $j_{\mu}(x)$ antiperiodic

zero-mode excluded

Estimator HVP (zero-momentum projection?):

$$G(x_0|T,L) = -\frac{1}{3} \int_{V_L} \langle j_k(x) j_k(0) \rangle_{T,L}$$
(1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

• $j_{\mu}(x)$ antiperiodic

- zero-mode excluded
- zero-momentum projection not possible

Estimator HVP (zero-momentum projection?):

$$G(x_0|T,L) = -\frac{1}{3} \int_{V_L} \langle j_k(x) j_k(0) \rangle_{T,L}$$
(1)

• $j_{\mu}(x)$ antiperiodic

- zero-mode excluded
- zero-momentum projection not possible

Choose:

$$V_L = \left(-\frac{L}{2}, \frac{L}{2}\right)^3 \times (0, T) \qquad (2)$$

[Hansen and Patella 2020]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

 $e^{-M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-\sqrt{3}M_{\pi}L} + e^{-2M_{\pi}L} \dots$ Finite Volume Effects

[Hansen and Patella 2020]

 $e^{-M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-\sqrt{3}M_{\pi}L} + e^{-2M_{\pi}L} \dots$

$$+e^{-M_{\pi}T} + \ldots + e^{-M_{\pi}\sqrt{L^{2}+T^{2}}} + \ldots$$

Finite-Time Effects
-> Subleading!

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへぐ

[Hansen and Patella 2020]

 $e^{-M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-\sqrt{3}M_{\pi}L} + e^{-2M_{\pi}L} \dots$

$$+e^{-M_{\pi}T}+\ldots+e^{-M_{\pi}\sqrt{L^{2}+T^{2}}}+\ldots$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● のへぐ

[Hansen and Patella 2020]

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L}\sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T(-k_3^2, -p_3 k_3)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

▲□▶▲□▶▲≣▶▲≣▶ ■ のへで

[Hansen and Patella 2020]

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L}\sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T(-k_3^2, -p_3 k_3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

[Hansen and Patella 2020]

$$\Delta G_L(x_0) = -\sum_{\boldsymbol{n}\neq \boldsymbol{0}} \int \frac{\mathrm{d}\boldsymbol{p}_3}{2\pi} \frac{e^{-|\boldsymbol{n}|L}\sqrt{M_\pi^2 + \boldsymbol{p}_3^2}}{24\pi|\boldsymbol{n}|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T(-k_3^2, -p_3 k_3)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

[Hansen and Patella 2020]

$$\begin{split} \Delta G_L(x_0) &= -\sum_{n \neq 0} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L} \sqrt{M_\pi^2 + p_3^2}}{24\pi |n|L} \\ & \text{pion Compton} \\ & \text{scattering amplitude} \\ & \int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T(-k_3^2, -p_3 k_3) \\ & + \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_\pi L}) \end{split}$$

[Hansen and Patella 2020]

$$egin{aligned} \Delta_{\mathcal{T},L}(x) &= \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \Delta_{\infty}(x + Ln) \ L &= ext{diag}(\mathcal{T}, L, L, L) \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\Delta_{\mathcal{T},\mathcal{L}}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \Delta_{\infty}(x + \mathcal{L}n)$$

$$\Delta_{\mathcal{T},\mathcal{L}}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \Delta_{\infty}(x + \mathcal{L}n)$$

$$\Delta_{\mathcal{T},\mathcal{L}}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \Delta_{\infty}(x + \mathcal{L}n)$$

$$\Delta_{\mathcal{T},\mathcal{L}}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} \Delta_{\infty}(x + \mathbf{L}n)$$

C-parity basis

$$\pi^{3}(x) = \pi^{0}(x), \qquad \pi^{\pm} = \frac{\pi^{1}(x) \pm i\pi^{2}(x)}{\sqrt{2}}$$
 (1)

$$\Delta_{T,L}^3(x) = \Delta_{T,L}^1(x) = \sum_{n \in \mathbb{Z}^4} \Delta_\infty(x + Ln)$$
(2)

$$\Delta_{T,L}^2(x) = \sum_{n \in \mathbb{Z}^4} (-1)^{\langle n \rangle} \Delta_\infty(x + Ln)$$
(3)

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$egin{aligned} \Delta^q_{T,L}(x) &= \Delta_\infty(x) + \sum_{n \in \mathbb{Z}^4 \setminus \{0\}} rac{1 + (-1)^{q \langle n
angle}}{2} \Delta_\infty(x + Ln) \ &\langle n
angle &= \sum_i n_i \operatorname{mod} 2 \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\Delta_{T,L}^{q}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^{4} \setminus \{0\}} \frac{1 + (-1)^{q \langle n \rangle}}{2} \Delta_{\infty}(x + Ln)$$

$$\Delta_{T,L}^{q}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^{4} \setminus \{0\}} \frac{1 + (-1)^{q \langle n \rangle}}{2} \Delta_{\infty}(x + Ln)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\Delta_{T,L}^{q}(x) = \Delta_{\infty}(x) + \sum_{n \in \mathbb{Z}^{4} \setminus \{0\}} \frac{1 + (-1)^{q \langle n \rangle}}{2} \Delta_{\infty}(x + Ln)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ
$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{q = \{0, \pm 1\}} \frac{1 + (-1)^{q \langle n \rangle}}{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L} \sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T^{\mathbf{q}}(-k_3^2,-p_3 k_3)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{\substack{q = \{0, \pm 1\}}} \frac{1 + (-1)^{q(n)}}{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L} \sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}}{\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T^q(-k_3^2, -p_3 k_3)}$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{q = \{0, \pm 1\}} \frac{1 + (-1)^{q(n)}}{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L} \sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$
$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \operatorname{Re} \left(q - k_3^2, -p_3 k_3\right)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}M_{\pi}L}})$$

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{q = \{0, \pm 1\}} \underbrace{\frac{1 + (-1)^{q(n)}}{2}}_{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L}\sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T^{\mathbf{q}}(-k_3^2,-p_3 k_3)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{q = \{0, \pm 1\}} \underbrace{\frac{1 + (-1)^{q(n)}}{2}}_{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L}\sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T^{\mathbf{q}}(-k_3^2,-p_3 k_3)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

<**n**> = 2n_i

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{q = \{0, \pm 1\}} \underbrace{\frac{1 + (-1)^{q(n)}}{2}}_{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L}\sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} \, T^{\boldsymbol{q}}(-k_3^2,-p_3 k_3)$$

$$+ \mathcal{O}(e^{-\sqrt{2+\sqrt{3}}M_{\pi}L})$$

<**n**> = 2n_i

$$\Delta G_L(x_0) = -\sum_{n \neq 0} \sum_{q = \{0, \pm 1\}} \underbrace{\frac{1 + (-1)^{q(n)}}{2}}_{2} \int \frac{\mathrm{d}p_3}{2\pi} \frac{e^{-|n|L}\sqrt{M_{\pi}^2 + p_3^2}}{24\pi |n|L}$$

$$\int \frac{\mathrm{d}k_3}{2\pi} \cos(k_3 x_0) \mathrm{Re} T^{\mathbf{q}}(-k_3^2,-p_3 k_3)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

 $e^{M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-2M_{\pi}L} + e^{-2M_{\pi}L} \dots$

 $+e^{-M_{\pi}T}+\ldots+e^{-M_{\pi}\sqrt{L^{2}+T^{2}}}+\ldots$

 $+e^{-M_{\rm K}L}+\ldots$

 $e^{M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-2M_{\pi}L} + e^{-2M_{\pi}L} \dots$

$$+e^{-M_{\pi}T}+\ldots+e^{-M_{\pi}\sqrt{L^{2}+T^{2}}}+\ldots$$

 $+e^{-M_{\rm K}L}+\ldots$

• Charged case removed by factor $\frac{1+(-1)^{\langle n \rangle}}{2}$

 $e^{M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-2M_{\pi}L} + e^{-2M_{\pi}L} \dots$

 $+e^{-M_{\pi}T}+\ldots+e^{-M_{\pi}\sqrt{L^{2}+T^{2}}}+\ldots$

 $+e^{-M_{\rm K}L}+\ldots$

- Charged case removed by factor $\frac{1+(-1)^{\langle n \rangle}}{2}$
- Spectral Decomposition of T^q: Largest contribution from pole for one-pion intermediate states

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $e^{M_{\pi}L} + e^{-\sqrt{2}M_{\pi}L} + e^{-2M_{\pi}L} + e^{-2M_{\pi}L}$

 $+e^{-M_{\pi}T}+\ldots+e^{-M_{\pi}\sqrt{L^{2}+T^{2}}}+\ldots$

 $+e^{-M_{\rm K}L}+\ldots$

- Charged case removed by factor $\frac{1+(-1)^{\langle n \rangle}}{2}$
- Spectral Decomposition of T^q: Largest contribution from pole for one-pion intermediate states
- ▶ Proportional to pion formfactor → zero for uncharged case, also for periodic case

FV Effects: Results

	Table: $-\Delta a_{\mu}(L) imes 10^{10}$			Table: $-100 imes \Delta a_{\mu}(L)/a_{\mu}$			
/	$M{\pi}L$	C* BC	PBC	-	$M_{\pi}L$	C* BC	PBC
	4	9.74(1.6)	22.4(3.1)	_	4	1.39	3.20
	5	3.25(0.23)	10.0(0.4)		5	0.464	1.43
	6	1.027(0.034)	4.42(0.06)		6	0.147	0.631
	7	0.311(0.005)	1.924(0.009)		7	0.0444	0.275
	8	0.0909(0.0008)	0.826(0.001)	_	8	0.0130	0.118

FV Effects: Results

	Table: $-\Delta a_{\mu}(L) imes 10^{10}$			Table: $-100 imes \Delta a_{\mu}(L)/a_{\mu}$			
$M_{\pi}L$	C* BC	PBC		$M_{\pi}L$	C* BC	PBC	
4	9.74(1.6)	22.4(3.1)		4	1.39	3.20	
5	3.25(0.23)	10.0(0.4)		5	0.464	1.43	
6	1.027(0.034)	4.42(0.06)		6	0.147	0.631	
7	0.311(0.005)	1.924(0.009)		7	0.0444	0.275	
8	0.0909(0.0008)	0.826(0.001)		8	0.0130	0.118	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

► C^{*} BC FV effects vanish faster than for periodic

PBC from [Hansen and Patella 2020]

Computational Cost of Precision

Conclusion and Related Work

• Muon g - 2 calculations are underway

Conclusion and Related Work

- Muon g 2 calculations are underway
- OpenQ*D: [Campos et al. 2020]: https://gitlab.com/rcstar/openQxD

Conclusion and Related Work

- Muon g 2 calculations are underway
- OpenQ*D: [Campos et al. 2020]: https://gitlab.com/rcstar/openQxD
- Work on FV effects of IB breaking contributions is underway

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

References I

Abi, B. et al. (2021). "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm". In: Phys. Rev. *Lett.* 126 (14), p. 141801. DOI: 10.1103/PhysRevLett.126.141801. URL: https: //link.aps.org/doi/10.1103/PhysRevLett.126.141801. Campos, Isabel et al. (2020). "openQ*D code: a versatile tool for QCD+QED simulations". In: The European Physical Journal C 80.3. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-7617-3. URL: http://dx.doi.org/10.1140/epjc/s10052-020-7617-3. Colangelo, G. et al. (2022). "Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization". In: *Physics Letters B*, p. 137313. DOI: 10.1016/j.physletb.2022.137313. URL: https://doi.org/10.1016%2Fj.physletb.2022.137313.

References II

- Hansen, Maxwell T. and Agostino Patella (2020). "Finite-volume and thermal effects in the leading-HVP contribution to muonic (g2)". In: JHEP 10, p. 029. DOI: 10.1007/JHEP10(2020)029. arXiv: 2004.03935 [hep-lat].
 Kronfeld, Andreas S. and U. J. Wiese (1991). "SU(N) gauge theories with C periodic boundary conditions. 1. Topological structure". In: Nucl. Phys. B 357, pp. 521–533. DOI: 10.1016/0550-3213(91)90479-H.
- Lehner, Christoph and Aaron S. Meyer (2020). "Consistency of hadronic vacuum polarization between lattice QCD and the R ratio". In: *Physical Review D* 101.7. ISSN: 2470-0029. DOI: 10.1103/physrevd.101.074515. URL: http://dx.doi.org/10.1103/PhysRevD.101.074515.

References III

- Lucini, Biagio et al. (2016). "Charged hadrons in local finite-volume QED+QCD with C boundary conditions". In: JHEP 02, p. 076. DOI: 10.1007/JHEP02(2016)076. arXiv: 1509.01636 [hep-th].
- Polley, L. and U. J. Wiese (1991). "Monopole condensate and monopole mass in U(1) lattice gauge theory". In: Nucl. Phys. B 356, pp. 629–654. DOI: 10.1016/0550-3213(91)90380-G.

Backup

$$egin{aligned} \mathcal{T}^{q}(k^{2},k\cdot p) &= \mathrm{i}\lim_{oldsymbol{p}'
ightarrow oldsymbol{p}} \int \mathrm{d}^{4}x\,e^{\mathrm{i}kx} \ && \langle \pi^{q}(oldsymbol{p}')|\,\hat{\mathrm{T}}\left\{J_{
ho}(x)J^{
ho}(0)
ight\}|\pi^{q}(oldsymbol{p}) \end{aligned}$$

$$T^{q}(-k_{3}^{2},-p_{3}k_{3}) = \lim_{p_{3}^{\prime} \to p_{3}} \langle \pi^{q}(p_{3}^{\prime}\hat{e}_{3}) | J_{\rho}(0)\hat{O}J^{\rho}(0) | \pi^{q}(p_{3}\hat{e}_{3}) \rangle$$

$$\hat{O} = \frac{(2\pi)^3 \delta(\hat{P}_1) \delta(\hat{P}_2) \delta(\hat{P}_3 - p_3 - k_3)}{\hat{H} - \sqrt{\hat{p}_3^2 + M_\pi^2} - i\varepsilon}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\hat{O} = \frac{(2\pi)^3 \delta(\hat{P}_1) \delta(\hat{P}_2) \delta(\hat{P}_3 - p_3 - k_3)}{\hat{H} - \sqrt{\hat{p}_3^2 + M_\pi^2} - i\varepsilon}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\mathbb{1}=\left|\Omega
ight
angle\left\langle \Omega
ight|$

$$+\sum_{\boldsymbol{q}=\{0,\pm1\}}\int \frac{\mathrm{d}^{3}\ell}{(2\pi)^{3}}\frac{1}{2E(\ell)}\ket{\pi^{\boldsymbol{q}}(\boldsymbol{\ell})}\bra{\pi^{\boldsymbol{q}}(\boldsymbol{\ell})}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$+ \theta(\hat{\mathrm{M}} - 2M_{\pi})$$

[Hansen and Patella 2020] $\mathbb{1} = \left|\Omega\right\rangle \left\langle \Omega\right| - \underbrace{\text{Vacuum}}_{\text{contribution}}$

$$+\sum_{q=\{0,\pm1\}}\int \frac{\mathrm{d}^{3}\ell}{(2\pi)^{3}}\frac{1}{2E(\ell)}\left|\pi^{q}(\boldsymbol{\ell})\right\rangle\left\langle\pi^{q}(\boldsymbol{\ell})\right|$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

$$+ \theta(\hat{M} - 2M_{\pi})$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$+ \theta(\hat{\mathrm{M}} - 2M_{\pi})$$

 $\mathbb{1}=\left|\Omega\right\rangle \left\langle \Omega\right|$

$$+\sum_{\boldsymbol{q}=\{0,\pm1\}}\int \frac{\mathrm{d}^{3}\ell}{(2\pi)^{3}}\frac{1}{2E(\ell)}\left|\pi^{\boldsymbol{q}}(\boldsymbol{\ell})\right\rangle\left\langle\pi^{\boldsymbol{q}}(\boldsymbol{\ell})\right|$$

 $+ \theta(\hat{M} - 2M_{\pi}) -$ = highes mass

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

$$T^{q} = T^{q}_{\rm vac} + T^{q}_{1\pi} + T^{q}_{\rm MP}$$

$$T^{\boldsymbol{q}} = T^{\boldsymbol{q}}_{\mathrm{vac}} + T^{\boldsymbol{q}}_{1\pi} + T^{\boldsymbol{q}}_{\mathrm{MP}}$$

Vacuum Contribution

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ 三 ○ ○ ○ ○

$$T^{q} = T^{q}_{\mathrm{vac}} + T^{q}_{1\pi} + T^{q}_{\mathrm{MP}}$$

Vacuum Contribution

 $T_{
m vac}^{q} \propto \langle \pi^{q} | J_{\mu} | \Omega
angle = 0$

One-Pion Contribution

$$T^{\boldsymbol{q}}_{1\pi} = T^{\boldsymbol{q}}_{1\pi,\mathrm{pole}} + T^{\boldsymbol{q}}_{1\pi,\mathrm{reg}}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$T^{q} = T^{q}_{\mathrm{vac}} + T^{q}_{1\pi} + T^{q}_{\mathrm{MP}}$$

Vacuum Contribution

 $T_{\mathrm{vac}}^{q} \propto \langle \pi^{q} | J_{\mu} | \Omega
angle = 0$

One-Pion Contribution

$$T_{1\pi}^{q} = T_{1\pi,\text{pole}}^{q} + T_{1\pi,\text{reg}}^{q}$$

$$\Rightarrow T^q = T^q_{\text{pole}} + T^q_{\text{reg}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$T^{q} = T^{q}_{\mathrm{vac}} + T^{q}_{1\pi} + T^{q}_{\mathrm{MP}}$$

Vacuum Contribution

 $T_{
m vac}^{q} \propto \langle \pi^{q} | J_{\mu} | \Omega
angle = 0$

One-Pion Contribution

The Pole Contribution is Zero for Uneven Numbers of Translations

Charged Case

$$\frac{1+(-1)^{q\langle \pmb{n}\rangle}}{2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

The Pole Contribution is Zero for Uneven Numbers of Translations

Pole Contribution

Table: $-100 imes rac{\Delta a(L)}{a_{\mu}}$								
$M_{\pi}L$	$ \mathbf{n} = \sqrt{2}$	2	$\sqrt{6}$	$2\sqrt{2}$	Sum	PBC		
4	1.16	0.104	0.0944	0.0128	1.38	3.17		
5	0.428	0.0199	0.0112	0.00103	0.461	1.42		
6	0.141	0.00349	0.00124	0.0000764	0.146	0.630		
7	0.0433	0.000582	0.000130	$< 10^{-5}$	0.0440	0.274		
8	0.0128	0.0000936	0.0000132	$< 10^{-5}$	0.0129	0.118		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

PBC from [Hansen and Patella 2020]
All-orders Expansion in EFT

[Hansen and Patella 2020]

(3)

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ ● ●