
Intro to

Hannah Fronenberg

hannah.fronenberg@mail.mcgill.ca

Summer Particle Astrophysics Workshop

May 9th, 2022

A bit about me
• Undergrad at U of T and MSc at McGill
• Currently a PhD student at McGill University

(McGill Space Institute)
• I study cosmology where I try to learn about

large structure formation, to precisely
measure the parameters that govern our
universe’s evolution, and sometimes I like to
think about weirder things like cosmic
strings!
• I work with 21 cm, line intensity mapping,

CMB observations
• I also love teaching and interacting with

students so I’m really excited to spend the
next two hours with you all.
• Apart from physics I love all things music and

over the pandemic I also learned to knit.
• Fun fact: I have never taken a computer

science course!

A bit about me
• Undergrad at U of T and MSc at McGill
• Currently a PhD student at McGill University

(McGill Space Institute)
• I study cosmology where I try to learn about

large structure formation, to precisely
measure the parameters that govern our
universe’s evolution, and sometimes I like to
think about weirder things like cosmic
strings!
• I work with 21 cm, line intensity mapping,

CMB observations
• I also love teaching and interacting with

students so I’m really excited to spend the
next two hours with you all.
• Apart from physics I love all things music and

over the pandemic I also learned to knit.
• Fun fact: I have never taken a computer

science course!

HERA

Plan For Today

• What is python
• Installation and creating environments (you don’t need to install it to

participate in the activities today)
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules, and Libraries
• If time: debugging and test code

fun activities
throughout J

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules and Libraries
• If time: debugging and test code

What is

• Python is a programming language
• It is an interpreted language meaning it is not

directly compiled into machine instructions.
Python code is instead read and executed by
some other program (ex. CPython, Jython,
PyPy…)
• It is an object oriented language which menas

that it organizes software design around data,
or objects, rather than functions and logic.
• Def object: a data field that has unique attributes

and behavior.

What is
Pros Cons

Versatile and easy to use Not as fast as other languages

Fast to develop Memory can be an issue

Lots of libraries to simplify your life Not easy to parallelize and do threaded
computation

Easy to add non-python extension (ex. Numpy
is a library for really efficient FORTRAN
routines)

Not good for mobile development

Comes built in with Linux and macOS

Open source with a big community of users

It writes “nice” code with not as much syntax
as other languages and is easy to read

• Interpreter vs Engine
• Python as an interpreter allows you to run python code on the command line

just like bash. By typing the command:
$ python3

you can write and run python code in a python shell. (I almost never use this
except sometimes as a calculator)
• Python as an engine allows you to write and run python scripts in files with

the file extension .py (this is what I use every day!). To do this make sure you
are in a shell that has python running and run your code by typing:

$ python my_python_code.py

How can I use ?

Demo: Interpreter vs Engine

Follow along in terminal or on the colab notebook in the empty
cells labelled #pretend command line

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules and Libraries
• If time: debugging and test code

What do you need to install?

• For today, nothing! But in general, you will need to install python 3 if
your operating system doesn’t have it pre-installed. You can do so
here:

Python download: https://www.python.org/downloads/
• You probably also want to use a package manager and installer. What

this does is manage the installation, storage, and updating of all your
python packages. Some also allow you to create virtual environments
(which we will talk about soon). Using a package manager will help
reduce issues that come with package dependencies and versions.
• Download Anaconda: https://www.anaconda.com/
• Download Miniconda: https://docs.conda.io/en/latest/miniconda.html

https://www.python.org/downloads/
https://www.anaconda.com/
https://docs.conda.io/en/latest/miniconda.html

Versions
“Online I see some stuff in python2 and some stuff in python3, does it
matter which one I use?”

YES
These two versions are mildly incompatible:

Rule #1: We always use python3
Rule#2: We never ever ever ever use python2 (unless you’re using someone’s old code that they rudely
did not update for you, but it’s okay because at least they optimized it and it runs really fast)

You can check which version you have by typing $ python –V into the
command line

python2 python3

print a , print “hello world” print(a), print(“hello world”)

7/2 = 3 (integer division) 7/2 = 3.5 (floating point division)
7//2 = 3 (integer division)

Virtual Environments: What are they and why
we need them
A virtual environment a folder structure that allows you to run Python in a lightweight and
isolated environment.
• Ex. You can have a different environment for each project with only the packages that

you use for that specific project installed.
Why would you want to use one exactly?
• Avoid pollution: If you install packages to your operating system’s global Python, these

packages will mix with the system-relevant packages (this has happened to me…)
• Avoid system conflicts: If you update your operating system, then the packages you

installed might get overwritten and lost (this has happened to me…)
• Avoid dependency conflicts: You might want different versions of things for different

codes and you can’t have multiple versions installed in the same place.
• Keep track of dependencies for a project: If you want to make your code publicly

available then you need to be able to tell people what packages your code uses.
• No administrator lockouts during installation: Usually don’t need full system access to

install things in an environment.

My Set-Up

• OS: MacOS
• Terminal: Bash
• Python Version: Python 3.9.7
• Package Manager/Installer: Miniconda
• Text editor: Sublime Text (locally), nano (remote server)
• Random tools: Jupyter notebook, nb-extensions, virtual environments

Demo: Installing Python Packages and
making environments

Follow along in terminal (sadly not in colab because everything
there is installed)

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules, and Libraries
• If time: debugging and test code

Basic Operations in
Operation Symbol Example

Addition + 5+5 = 10

Subtraction - 6-5 = 1

Multiplication * 3*7 = 21

Division / 7/2 = 3.5

Integer Division // 7//2 = 3

Exponentiation ** 2**2 = 4

Imaginary numbers j 3+3j

Modulo (remainder) % 7%2 = 1

Powers of 10 (orders of
magnitude)

e”number” 3x109 = 3e9

Assigning a variable = a = 4

A few extra things

• You can add numbers to a variable by performing an “augmented
assignment” like this

a += 3 is the same as a = a+3
• Note that the original a you defined has now been overwritten, a no longer has its

original value. I use this a lot for unit conversions!
• You can do the same thing with -= , *= , /=

• Python numbers are “BigNum” meaning that there is no maximum value or
rollover. Numbers will just get as big as your computer’s memory will allow.
• Sometimes you also see numbers that should be 0 approximated as a really

really small number.
Ex. √(-2) = 0 + √2j but Python outputs (8.65956056e17+1.41421356237j)

Exploration: Try doing some math!

You can try this out in a python shell on the command line or on colab!

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules, and Libraries
• If time: debugging and test code

Objects
• In Python EVERYTHING is an object
• Since everything is an object, you can pass anything to a function. This is

not true of other languages. This is sometimes referred to as duck typing.
Objects in python:
• Strings
• Floats
• Lists
• Arrays
• Tuples
• Functions (methods)

• There are also things called classes which are kind of like object
constructors. They do take in arguments, like a function, but they
themselves don’t produce any output per se.

Typing in

• Python has dynamic typing as opposed to static typing. This means
you do not need to specify what type of object something is. Python
is smart. Python knows.

• Python has strong typing as opposed to weak typing. This means that
if you want to change the type of object something is, you need to do
so explicitly. Here, Python is not smart, it doesn’t know.

Ex. a = “3” à float(a) = 3.0

Python C

a = 5.00123 float a[= 5.00123];

Strings and Floats

Strings
• A string is a single character or set

of characters (or glyphs)
• They are denoted using “ ” or ‘ ‘ (it

doesn’t matter which you use)
• They are

• Immutable
• Homogeneous
• Ordered

Ex. a = “I love physics”

Floats
• A set of numbers that represent

the actual numerical value of the
characters, not just the glyph.
• They are denoted just using

regular numbers.
• They are not integers

Ex. b = 3.5

Lists, Arrays, and Tuples

• These are all data structures that can used to store multiple
strings/floats.
• These use indices to label their elements:

Lists Numpy arrays Tuples
my_list=[‘a’,4,‘hannah’,32.0] my_arr = np.array([1,2,3]) my_tup = (‘1’,33,96)

Ordered Ordered Ordered

Mutable Mutable (using the index) Immutable

Heterogeneous Technically heterogeneous (but
you need to communicate that)

Heterogeneous

0 1 2 3 4 5 6

Dictionaries

• Dictionaries also store data like lists/arrays/tuples but they store pairs
of data using a key:value structure.
• These are
• Unordered (the key is the index instead)
• Heterogeneous
• Mutable

my_dict = {“my name”: ”hannah”, “my age”: 24, ”my school”: “McGill”}

Activities: Let’s get comfortable with
manipulating these objects!

You can try this out in a python shell on the command line or on colab!

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Function, Modules, and Libraries
• If time: debugging and test code

Flow Control
• You can define a set of computations using loops

• If/elif/else : performs a computation if the condition is satisfied
• While: repeats the computation until the condition is false
• For: performs a computation for all the indices defined in the sequence

• With if and while statements, you quantify their conditions using these symbols:

•

• Continue will skip to the next loop iteration.
• Break will break out of the innermost loop.

Condition Symbol Example

equal to == if x == 8:

Greater than/
Less that

> / < while x > 5:

Greater than or
equal to

>= if x >= 10:

Not equal to != or <> if x != 2:

Flow control: Indentation

• It is important to organize your code in a block
• Blocks are typically indented with 4 spaces (1 tab in most setups).
• Most importantly, your indentation needs to be consistent across

your whole script.
• You can have unlimited loops in loops and all you need to do is keep

indenting.
• It is common to run into indentation errors! You can use your text

editor to help you avoid these.

Activity: Using a loop

You can try this out in a python shell on the command line or on colab!

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules, and Libraries
• If time: debugging and test code

Functions (and methods) in

• Functions allow us to nicely package tasks into something that is callable
and interchangeable with different variables.
• They are defined like this:

def my_function(variables):
stuff to compute goes here
return result

• You can also save functions in .py files and import them into another script.
• Here are some MAGICAL lines for auto-importing into a jupyter notebook

which I use all the time:

%load_ext autoreload
%autoreload 2

Libraries

• Python libraries are large sets of pre-defined functions (but here we
all them modules) that are available for us to use.
• My favourites are:
• Numpy
• Scipy
• Matplotlib
• OS
• Sys
• Astropy

Activity: Building a module and using
libraries

You can try this out in a jupyter notebook or on colab!

Plan For Today

• What is python
• Installation and creating environments
• Basic math and arithmetic with python
• Python objects and their functions
• Strings, floats, lists, array, dictionaries

• Flow control
• for, if, else, while

• Functions, Modules, and Libraries
• If time: debugging and test code

What does it mean that a code is covered?

If a project has X% coverage, that means that X% of
the lines, functions and/or branches of the files
included in your tests are covered by tests.

But this doesn’t mean that your code is safe from all bugs…

Unit testing in

• Unit testing is a method that allows you to test individual units of
code with program specific tests.
• In ”real” world coding, every program has to be tested. Getting in the

habit of writing test code will help you level-up your programming
and help you spend less time debugging code.
• In python the module that I use to do this is called nosetests and here

are some basic examples of things to test:
• Check that arrays are the right shape
• If something has to be a particular value, check that
• Check the data type of something

Happy coding and thanks everyone!

