C++: A Quick Intro

Summer Particle Astrophysics Workshop
(EIEIOO)

[an Lam
12th May 2022

-?}/ Carleton

University

About me

* Academic journey:
* B.Math. @ University of Waterloo (2013)
* Ph.D. @ Queen’s University (2020)
* Postdoc @ Carleton University (since 2021)

€ _Ccanapns)

Source: https://imgur.com/gallery/aNmXJZu

SN

@ Carleton
W unNiIvERSsITY

Université [E] UNIVERSITY OF
de Montréal @ ALBERTA

Goal of this presentation

* Not a complete tutorial on C++.
» Just enough to get you started.
 Share with you key things | learned over the years.

* My setup:
e Local machine: Windows 10
 MobaXterm SSH Client

 Neutrino server @ Queens (thanks Prof. Ryan Martin
and Mark Anderson)

e Editor: Emacs

Intro

* object-oriented programming language i.e.
everything related to classes and objects, along
with attribute and methods, similar to Python

* more complicated than Python

* Python handles many things implicitly like type
declarations.

* more syntax to be aware off than Python
» must declare data type with variables
* must end statement with semicolon

* uses pointers (more later)

General workflow

1. Write code with human readable alphabets.

2. Compile the code I.e. translate the human readable
alphabets into instructions the computer can
understand.

3. Compiler will create an executable (.exe) file
which you can run.

* A successful compile does not mean you are 100%

problem free. Running the .exe file can reveal more
ISSUes.

Hello World

Purpose: Prints “Hello World!” to screen.

File Edit Options Buffers Tools C++ Help

#include <iostream
!sing namespace std;
int main(){
cout << "Hello World!" << endl;

return 0;

Hello World

1. Write the code as shown. Save file as
hello_world.cc

2. Compile by doing: g++ hello_world.cc —o hello
* ‘hello.exe’ file will be created

3. Run by doing: ./hello

1an. lam@neutrino:~/summer_tutorial/2022% g++ hello_world.cc -o hello
1an. lam@neutrino:~/summer tutorial/2022% ./hello

Hello World! _
1an.lam@neutrino:~/summer tutorial/2822s5 |}

Note: g++ is one of few compilers. ROOT uses a different compiler.

Hello World

#include <iostream>

When writing programs, you might want to reuse
functions from other sources. You can think of
#include as ‘copy-pasting’ code to where the #include
was called. In this case, i1t is a header file called
‘lostream’ (input-output stream) which contains the
function definitions of ‘cout’ and ‘end’

Python:
import library _name

Hello World

using namespace std;

Namespaces can be thought of as a collection of functions,
grouped under a larger umbrella (namespace) in order to
prevent variable definition conflicts.

In this case, we are using the ‘std’ or ‘standard’ namespace.
‘cout’ and ‘endl’ functionalities are defined in here.

You can create your own namespaces but I won’t cover it here.
| personally never found it necessary.

Hello World

int main(){...}

Declare a function called ‘main’ that returns a type
int. ‘main’ 1s a special name, which the compiler
looks for specifically and executes the functions
called in ‘main’ in order.

10

Hello World

cout << “Hello World!” << endl;

cout prints whatever follows after << to the screen. It is
equlv?llent to Python’s print() function. You can cout variables
as well.

endl means ‘end line’; creates a new line.
<< :Sstream operator

Note: This is my go-to method to debug code. If your code is
throwing errors‘and you want to systematically work through
your code, just ‘cout’ stuff at various lines and see where the

code fails or returns something that does not makes sense.

11

Hello World

console.log("im still working™);
console.log("asdjoauhefefefAsda”);
console.log("peanut™);

12

Hello World - Advanced

 I’ll now make some modifications to the hello
world program to illustrate some common concepts.

Topic
Sealleine VEFE e Included some exercises
- at certain points to get
you to explore on your
'for' loop own. (Not for course
credit unfortunately ®)

Declare Functions

'If' statement

'if...else' statement
'break’

Variable Scope

Global Variable Quick link table. Click
More C++ to jump to relevant
slides. 13

Hello World — declare variables

* Modify slightly to see how to declare variables.

File Edit thinna Buffers Tools C++ Hel
#include <iostream

using namespace std;

int main{){
string aString = "Hello World!";
int year = 2022;
cout =< aString =< " " << year << endl;

return ©;

Note: the ‘string’ datatype is under the ‘std’ namespace. If you do not
use ‘using namespace std’, you’ll have to declare string variables
with ‘std::string aString = “Hello World!” ;

14

Hello World — declare functions

|i;nc1ude <lostream=

Python:
def anotherFunc():

using namespace std;
vold anotherFunc(){
string strIn = "John";

cout << "My name 1s " =< strIn =< endl;

int main(){
string astring = "Hello World!";
int year = 20822;
cout << astring =< " " =< year =< endl;
anotherFunc();

return @;

15

Output

ian.lam@neutrino:~/summer_tutorial,/2022% emacs -nw hello world.cc
ian.lam@neutrino:~/summer_tutorial,s/2022% g++ hello world.cc -o hello
1an.lam@neutrino:~/summer_ tutorial,/2022% ./hello

Hello World! 2822

My name 1s John

1an.lam@neutrino:~/summer tutorial/2022s% |j

16

Hello World — declare functions

#include <i1ostreams

using namespace std;

int main{){
string aString = "Hello World!";

int year = 2022;

cout =< aString << " " << year << endl;

anotherFunc():

return @;

}

void anotherFunc(){
string strIn = "John";

cout << "My name 1s " =< strIn =< endl;

» Order of declaration
and calling matters.

« What if we swapped

the function to
come after main?

17

Output

1an.lam@neutrino:~/summer_ tutorial/2022% g++ hello world.cc -o hello
hello world.cc: In function ‘int main()’:

hello world.cc:16:3: error: ‘anotherFunc’ was not declared in this scope
16 | anotherFunc();

R ———
ian.lam@neutrino:~/summer_ tutorial/2822s |}

Good soldiers follow orders.

18

Hello World — declare functions

#1nclude <lostream=
using namespace std;

vold anotherFunc(};

int main{){

string astring = "Hello World!";

int year = 2022;

cout << aString << " ©

anotherFunc();
return 0,

¥

void anotherFunc(}{
string strIn = "John";

cout << "My name 1s "

=< year =< endl;

<< strIn == endl;

* Aesthetically, you don’t
want to scroll all the
way down your code to
search for ‘main’.

* Can declare the function
first and define it later.

 Let the compiler know

that such a function

exists so it won’t throw
a fit.

19

Output

ian.lam@neutrino:~/summer_ tutorial/2022% g++ hello world.cc -o hello
1an.lam@neutrino:~/summer_ tutorials/20225% ./hello

Hello World! 2822

My name 1s John

ian.lam@neutrino:~/summer_ tutorial/2022s% |j

20

Hello World — declare functions

#1nclude <lostream
using namespace std;

vold anotherFunc{string strIn);

int main(){
string aString = "Hello World!";
int year = 2022;
cout =< asString =< " " =< year =< endl;

anotherFunc("John") ;|
anotherFunc("Mary");

return 0;
¥
vold anotherFunc(string strin){

cout << "My name 1s: " =< strIn =< endl;

Functions can take in
Inputs/arguments/para
meters.

1) Don’t have to
hardcode.

2) Can reuse same
function with
multiple inputs.

21

Output

1an.lam@neutrino:~/summer_ tutorial/2022% g++ hello world.cc -o hello
1an.lam@neutrino:~/summer tutorial/2022% ./hello
Hello World! 2022

My name 1s: John
My name 1s: Mary)
ian.lam@neutrino:~/summer_ tutorial/zez22s |}

22

Hello World — declare functions

#include <iostream=
using namespace std;
vold anotherFunc(string strin);
double increasePrice(double pricelIn};
int main(){
string aString = "Hello World!";
int year = 2022;
cout =< aString =< " " =< year =< endl;

anotherFunc{"Jochn");
anotherFunc("Mary");

double gasPrice = increasePrice(180.90);

return 8;
¥
vold anctherFunc{string strIn){

cout =< "My name 1s: " =< strIn =< endl;
¥
double increasePrice(double priceIn){

double priceOut = priceIn + 0.42;

return pricelut;

cout <= "Current gas price: " =< gasPrice =< endl;

Functions can return a value.

Need to specify the type and make
sure it is consistent throughout. If it
isn’t, you’ll know when you compile
and run.

Notice the function declarations
neatly grouped at the top. This can
be collected into a header file
(shown later in).

Exercise:

For the function increasePrice,
rewrite it such that 0.42 is
passed as an argument.

Hint: increasePrice(double

priceln, double argln){...}
23

Output

1an.lam@neutrino:~/summer tutorials/2022% ./hello
Hello World! 2822

My name 1s: John

My name 1s: Mary

Current gas price: 181.32
ian.lam@neutrino:~/summer_ tutorials/2e225 |}

24

Hello World — for loop

File Edit Options Buffers Tools C++ Hel
#include <iostreams

using namespace std;

int main(){
string aString = "Hello World!";
int year = 2022;

for (int 1 = 0; 1<5; 1++){

cout << "This 1s the: " << 1 << " time!"
cout =< aString == " " =< year =< endl;
}
return @;
}
Notes:

[
I

 Doesn’t have to be

<< endl;

. Can be any variable name.

Statement 1 (int i=0): Declare
variable and start with 0O,
executed once at start.

Statement 2 (i<5): Boolean
condition. If True, continue
execution of code block.

Statement 3 (i++): executed
every time after code block has
been executed.

* I++ means ‘increment ‘i’ by 1 but return value of ‘i’ before incrementation.
In for loop implementation like this, itis similartoi=1+ 1, or i+=1

25

Output

1an. lam@neutrine:~/summer_tutorial/2022% g++ for_loop.cc -o hello
i1an.lam@neutrino:~/summer_tutorial,/2022s5 ./hello

This 15 the: @ time!
Hello World! 2022
This i1s the: 1 time!
Hello World! 2822
This 1s the: 2 time!
Hello World! 2622
This 15 the: 3 time!
Hello World! 2022
This 15 the: 4 time!
Hello World! 2022

Python equivalent:
for i in range (0,5)

Exercise:

Increment more than one step.
Step backwards instead of forward.
What if you did i<=5 ?

Increment in steps of 0.1 (hint:
change i from int to double)

26

Hello World — If statement

i;nclude <1ostream=
using namespace std; I==3 : Boolean stgtement can be
int main(){ read as “variable I is equal to 3

string aString = "Hello World!";
int year = 2022;

for (1nt 1 = 0; 1<5; 1++){

1f (1==3){
cout =< "Let's keep up the hype!" =< endl;
1
cout =< "This 1s the: " =< 1 =< " time!" =< endl;
cout =< aString =< " " =< year =< endl;
1
return 9;

27

Output

This 15 the: 8 time!
Hello World! 2022
This 15 the: 1 time!
Hello World! 2022
This 1s the: 2 time!
Hello World! 2622
Let's keep up the hype!
This 1s the: 3 time!
Hello World! 2622
This 15 the: 4 time!
Hello World! 2022

1an.lam@neutrino:~/summer_tutorial/2022% g++ for_loop.cc -o hello
1an.lam@neutrino:~/summer_ tutorial/2022% ./hello

Exercise:
Try other conditionals like i1<=3 , i>=3,
1'=3 (i not equal to 3).

Hello World — if... .else

#1include <iostream=

int

}

using namespace std;

main{){

string aString = "Hello wWorld!";
int year = 2022;

for {int 1 = B8; 1<5; 1++){

if (1=3){
cout =< "Let's keep up the hype!" =< endl;

¥

else 1f (1==2){
cout << "Have a good year!" =< endl;

}

else { _
cout << "Looking good!"™ <= endl;

}

<< 1 << " time!" << endl;

<< year << endl;

cout << "This 1s the: *®
cout << aString << " "

return O;

else if : check this if above
conditional is false.

else: evaluate this if all

above conditionals are
false.

Note: not necessary to have

‘else if”, ‘else’ for code to run.

If want to check multiple
conditionals, could also use
multiple ‘if” statements.

29

Output

Looking good!

This 1s the: & time!
Hello World! 2622
Looking good!

This 15 the: 1 time!
Hello World! 2p22
Have a good year!
This 15 the: 2 time!
Hello World! 2622
Let's keep up the hype!
This 15 the: 3 time!
Hello World! 2622
Looking good!

This 15 the: 4 time!
Hello World! 2622

30

Hello World - break

#include =1ostream=

using namespace std;

int main{){

string aString = "Hello World!";

int year = 2022;

for (int 1 = 8; 1<5; 1++){

cout << "This 1s the: " << 1 << " time!"
cout =< aString =< " " <= year << endl;
I
return 8;

if (1=1){
break;

}
1f (1=3){

Stops code block execution.
Exits the loop.

Notice that this if statement has
no accompanying else.

Note: Code executes

cout == "Let's keep up the hype!" =< endl;

¥

else 1f (1=2){
cout <= "Have a good year!" =< endl;

¥

else {
cout <<= "Looking good!" =< endl;

¥

sequentially so order matters!

<< endl;

31

Output

1an.lam@neutrino:~/summer_tutorial /20225 g++ for_loop.cc -o hello
ian.lam@neutrino:~/summer_tutorial/2022% ./ /hello

Looking good!

This 1s the: 8 time!

Hello World! 2822

1an.lam@neutrino:~/summer tutorial /28225 |j

Exercise:

Print an exit message (eg: “Bye
bye”) before the break.

Place the break code block further
down the code. Is the effect what
you expect?

32

Hello World — varia

#1include <lostream=
using namespace std;
int main{){

string aString = "Hello World!";

int year = 2022;

for (int 1 = 8; 1<5; 1++){

if (1==1){
int newYear = year + 1;

cout << "Look forward to " << newYear == endl;

1
if (1==3){

cout == "Let's keep up the hype!" =< endl;
1

else 1f (1=2){
cout <= "Have a good year!" =< endl;

1
else { _
cout =< "Looking good!" == endl;
1
cout =< "This 1s the: " << 1 <= " time!" << endl;
cout =< aString =< " " =< year =< endl;
h
return 8;

ble scope

33

Output

1an.lam@neutrino:~/summer tutorial/2022% g++ for_loop.cc -o hello
1an. lam@neutrino:~/summer_ tutorial/2622% ./hello
Looking good!

This 1s the: & time!

Hello World! 2822

Look forward to 2823

Looking good!

This 1s the: 1 time!

Hello World! 2@22

Have a good year!

This 1s the: 2 time!

Hello World! 2622

Let's keep up the hype!

This 15 the: 3 time!

Hello World! 2822

Looking good!

This 1s the: 4 time!

Hello World! 2@22

1an.lam@neutrino:~/summer tutorial/28225 |}

Hello World — varia

#1include <iostream=

using namespace std;
int main(){
string aString = "Hello World!";
int year = 2022;
for {(int 1 = 8; 1<5; 1++){
if (1==1){
int newYear = year + 1;

cout =< "Look forward to " =< newYear == endl;

H
if (1==3){

cout =< "Let's keep up the hype!" << endl;
1

else 1f (1==2){
cout << "Have a good year!" =< endl;

h
else { _
cout =< "Looking good!" == endl;
h
cout << "This 1s the: " =< 1 << " time!" =< endl;
cout =< aString == " " <= year =< endl;

cout =< newYear << endl;

return 0;

ble scope

35

Output

1an. lam@neutrino:~/summer tutorial/2022% g++ for_loop.cc -o helleo

for loop.cc: In function ‘int main()’:

for_loop.cc:39:13: error: ‘newYear’' was not declared in this scope
39 | cout << newYear =< endl;

| S
1an.lam@neutrino:~/summer_tutorial/zez2s |}

36

Hello World — variable scope

#1nclude =iostream=

using namespace std;
int main{){
string aString = "Hello World!";
int year = 20822;
for (int 1 = 8; 1<5; 1++){
if (1=1){
year = year + 1;

cout << "Look forward to " =< year =< endl;

}
if (1==3){

cout =< "Let's keep up the hype!" == endl;
}

else 1f (1==2){
cout =< "Have a good year!" =< endl;

1
else { .
cout <= "Looking good!" =< endl;
1
cout << "This 15 the: " << 1 << " time!" << endl;
cout << aString << " " << year =< endl;
1
return 8;

37

Output

1an. lam@neutrino:~/summer_ tutorial,/2022% g++ for_loop.cc -o helleo
1an. lam@neutrino:~/summer_ tutorial,/2022% ./hello
Looking good!

This 1s the: 6 time!

Hello World! 2822

Look forward to 2823

Looking good!

This 1s the: 1 time!

Hello World! 2823

Have a good year!

This 1s the: 2 time!

Hello World! 2623

Let's keep up the hype!

This 1s the: 3 time!

Hello World! 2823

Looking good!

This 1s the: 4 time!

Hello World! 2823

1an.lam@neutrino:~/summer_ tutorial/2e22s |j

Hello World — global variable

#include <lostreams
using namespace std;
double gVversion = 2.8;
int main{}{

string aString = "Hello World!";

int year = 2022;

for (int 1 = 8; 1<5; 1++){

1f (1==1){
int newYear = year + 1;

eyt newYear << End].:
cout == gVersion == endl;

¥

if (1==3){
cout =< "Let's keep up the hype!" <= endl;

¥

else 1f (1=2){
cout == "Have a good year!" == endl;

¥

else {
cout =< "Looking good!" =< endl;

h

cout == "This is the: " == 1 =< " time!" =< endl;

L L B =T 5”41,

:out == "Program versilon: " =< gVersion <= endl;
}
return 8;

Global variables, as the
name suggests, can be
accessed by all functions
everywhere in the code.

Usually prefixed with
lowercase ‘g’.

WARNING: Be careful
when using global
variables. Their global
scope means that any
modification could break
other functions.

39

Output

ian.lam@neutrino:~/summer_tutorial/2022% g++ for loop.cc -o hello
ian.lam@neutrino:~/summer_tutorial/2022% ./hello

Looking good!

This 1s the: 8 time!

Hello World! 2822

Program version: 2

Look forward to 2823

2
Loocking good!

This 15 the: 1 time!

Hello World! 2822

Program version: 2

Have a good year!

This 1s the: 2 time!

Hello World! 2622

\Prcgram version: 2

Let's keep up the hype!

This 15 the: 3 time!

Hello World! 2822

Program version: 2

Looking good!

This 1s the: 4 time!

Hello World! 2822

Program version: 2
ian.lam@neutrino:~/summer tutorial/28225 |j

Hello World - const

#1nclude <iostream>

using namespace std;
const double gVersion = 2.0;
int main{)}{
string aString = "Hello World!";
int year = 2022;
for (int 1 = 8; 1<5; 1++){
gversion 4= 3;
1f (1=1){
int newYear = year + 1;

cout =< "Look forward to " =< newYear << endl;
cout =< gVersion =< endl;

¥
1f (1==3){

cout << "Let's keep up the hype!" =< endl;
h

else 1f (1==2){
cout =< "Have a good year!" =< endl;

¥
else {)
cout <= "Looking good!" =< endl;

h

cout << "This 1s the: " << 1 << " time!" << endl;

cout << aString << " " << year << endl;

cout =< "Program version: " <= gVersion == endl;
h
return 8;

Prevents modification to
variable.

Global variables + const is
useful to hardcode physical
constants.

41

Output

1an. lam@neutrino:~/summer tutorial/2022% emacs -nw for loop.cc

1an. lam@neutrino: ~fsummer tutorial /20225 g++ for_loop.cc -o hello
for loop.cc: In function ‘int main()’:

for_loop.cc:15:14: error:
15 | gVersion 4= 3;

P ——— S
1an.lam@neutrino:~/summer_ tutorial/20225 |

assignment of read-only variable

‘gversion’

42

Summary

* Have shown the most common methods.

e This Is a non-exhaustive list but should be sufficient
to get started.

43

More C++

* We’ve seen various terminologies like ‘classes’ and
‘headers’.

* Probably a key phrase tossed around with regards to C++ Is
‘pointers’.

* Don’t worry 1f you don’t grasp 1t completely now.

Topic

Classes

Headers
Pointers
ROOT tie-In

Quick link table

44

Classes

« As mentioned, C++ Is an object-oriented
programming language, similar to Python.

» Classes can be thought of as defining a set of
properties and behavior/functions an object should
have.

* Object Is a specific instance created from a class.

 Depending on the class of the object, properties and
functions of the object will differ.

45

Classes: Baskets

 Say you have a fruit shop with fruits in baskets. Some
properties of the baskets could be ‘name of fruit’,
‘amount’, ‘color’.

« Some functions you would like to perform on a basket
could be ‘count amount of fruit’, ‘add a fruit’, ‘remove
a fruit’.

* You could construct a class called Basket.

* You can then create an instance of a Basket (object),

such as 20 apples. A function would be ‘add 3 more
green apples to the basket’.

 Actually, lets make this class!

46

Classes: Baskets

#include =iostream=

class Basket] 7/ class declaration Constructor: Initializes the object.
public: ‘ ., e
std::string fruit; // define variable publlC . dCCess SpeCIerr Te”S
int amount:; // define variable
gasket (std: istring , int y); //constructor how members of the class can be
int getAmountl(); // detine Tunction . .
) int agd-:hllr-:nuntliint z); // define function and input parameters accessed_ ‘pubhc’ means acceSSIble
Basket::Basket(std::string x, int y){ // Constructor function by eVe-I'yone. prlvate means
fruit = x; accessible only to members of the

amount = y;
class.

int Basket::getAmount(}{ // getAmount function
return amount;

}

int Basket::addamount{int z){ // addamount function

Recall: x +=y is equivalentto x = x +
y

Tip: x*=y is equal to X = x*y

(* means multiply here)

amount += z;

return amount;

int main{){

Basket basketobjl("apple®, 208);

std::cout << basketobjl.getAmount() << std::endl; Note: “// " 1s for
basketobjl.addAmount(3); Commenting.
std::cout =< basketobjl.getAmount() == std::endl; 47

Output

1an.lam@neutrino:~/summer_tutorial/2022% g++ class_example.cc -o basketex
ian.lam@neutrino:~/summer_ tutorial /20225 ./basketex

20
23 . .

Exercise:

Change ‘public’ to ‘private’. Did anything change? Why
or why not?

Explore the ‘private’ access specifier by creating one and
try to access it in various parts of your code.

48

Headers

* In all our examples so far, the “‘main’ function 1s 1n
the same file as our classes and function definitions.

* Alright for relatively simple code but can become
messy as code grows in length and complexity.

 Also, would be good to re-use code without
explicitly copy-pasting.

e Can do this with headers.

49

basket.h

#1fndef CLASS_EXAMPLE_H
#define CLASS_EXAMPLE_H

class Basket{

public:
std::string fruit;
int amount;
Basket(std::string x, i1nt y);
int getAmount(]};
int addamount(int z);

};

#endif

This 1s called the ‘header’ file.

Header guard. Prevents the same header
file to be added twice during compile.

Notreguiredfor-comptation-but-highly
ed ol f Y I
code: Just do it.

50

basket.cc

Ao o

Toada wm e 4 e m e
i =

#1include "basket.h®

Basket::Basket(std::string x, int y){

I

fruit = x;
amount = y;

int Basket::getamount(){

}

int Basket::addAmount{int z){

-~

return amount;

amount += z;

return amount;

Recall that #include is basically
copy-pasting the contents of
basket.h here.

Necessary. Otherwise, the
compiler won’t know the

definitions of the functions here.

Recall

o1

basketsample.cc

#include <iostream=
#1include "basket.h®

int main(){
Basket basketobjl("apple", 28);
std::cout << basketobjl.getAmount() =< std::endl;
basketobjl.addamount(3);
std::cout << basketobjl.getAmount() << std::endl;

return 0;

Exercise:

} In the header file and its matching cpp
file (basket.h, basket.cc) , there is only
one class defined in there. Recall the
functions defined in

(anotherFunc and increasePrice).
Incorporate those functions into the
basket.h and basket.cc and make sure
they are callable.

52

Pointers

« Variable that stores the memory address of another
variable

 Allows modification of a variable directly rather
than copying

« Copying can be expensive memory-wise If it is large.
Particle physics data ROOT trees is an example.

* When passed to a function, variables are copied.

* Instead, can pass a pointer to the function instead,
allowing direct modification of value stored at address.

53

Pointers (oversimplified)

Variable

stored In

Memory with address
0x523

stored In

&

» Pointer

Allows you to modify the variable directly as

stored in memory.

Pointers

* Pointers ‘point to’ the variable whose address they
store.

» “*7 15 called the ‘dereference operator’. Access the
variable the pointer is pointing to directly.

« ‘&’ 1s called the ‘address-of operator’
* “*’1s also used when declaring a pointer.

* ‘>’ can be thought of as a dereference operator
followed by a dot.

Variable:

object.method()

Pointers:

object->method()

(*object).method() 55

basketsample.cc

#include <iostreams
#include "basket.h"

int main(){
Basket* aa = new Basket("Orange", 30);

std::cout << aa->getAmount() =< std::endl;
std::cout =< &aa =< std::endl;

delete aa;

Basket basketobj1("Apple", 28);

std::cout =< basketobjl.getAmount(}) =< std::endl;

Note: Example of
bulk commenting.

basketobjl.addAamount(3);

std::cout << basketobjl.getAmount() =< std::endl;

return @;

56

Output

1an.lam@neutrino:~/summer_ tutorial/2022% g++ basketsample.cc basket.cc -o basketex
1an.lam@neutrino:~/summer_ tutorial/2022% ./basketex

30

ox7fffbab7fb6s]

ian.lam@neutrino:~/summer_tutorial/zezzs |}

57

Pointers - Note

* |f you use pointers, you HAVE to delete them after you
aré done. (Notice the delete in

* Not so important in simple code like this but especially
Important If you are pushing pointers through loops.

» If you forget to delete a pointer, and you create a new
object with the same pointer name, you’ll get a memory

eak. NOT GOOD.

* Deletion frees uR memory. If you are running a program
and you notice that your memory consumption is high
and climbing, you probably have a memory leak tha
could be due to undeleted pointers.

. 8rctier of deletion also matters. ‘LIFO’ : Last In First
UT.

58

Pointers - Note

 Notice | kept pointers till the end. It goes to show
that you can do a lot without having to use pointers.

* However, ROOT depends quite a lot on pointers, so
you should get comfy.

59

ROOT tie-In

« With all this in mind, you should be able to look up
various ROOT classes and use them effectively.

* Example: type ‘root cern thl’ in Google.
« TH1 : 1D histogram class for ROOT

o nl B

 THID : 1D histogram of the type ‘double’.

 THIF : 1D histogram of the type ‘float’, etc.

60

ROOT 6.17/01

Reference Guide

ROOT Home | Main Page | Tutorials i ~ | AllClasses~ | Files~ Release Notes Q-
List of all members | Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Static Protected Member Functions | Protected Attributes

TH1 Class Reference Static Protected Attributes | Private Member Functions | Friends | List of all members

The TH1 histogram class.

The Histogram classes

ROOT supports the following histogram types:

1-D histograms:

© TH1C : histograms with one byte per channel. Maximum bin content = 127

o TH1S : histograms with one short per channel. Maximum bin content = 32767

© TH1l : histograms with one int per channel. Maximum bin content = 2147483647

o TH1F : histograms with one float per channel. Maximum precision 7 digits

© TH1D : histograms with one double per channel. Maximum precision 14 digits
2-D histograms:

© TH2C : histograms with one byte per channel. Maximum bin content = 127

© TH2S : histograms with one short per channel. Maximum bin content = 32767

o TH2I : histograms with one int per channel. Maximum bin content = 2147483647

© TH2F : histograms with one float per channel. Maximum precision 7 digits

o TH2D : histograms with one double per channel. Maximum precision 14 digits
3-D histograms:

o TH3C : histograms with one byte per channel. Maximum bin content = 127

© TH3S : histograms with one short per channel. Maximum bin content = 32767

o THaI : histograms with one int per channel. Maximum bin content = 2147483647

© TH3F : histograms with one float per channel. Maximum precision 7 digits

o TH3D : histograms with one double per channel. Maximum precision 14 digits
Profile histograms: See classes TProfile, TProfile2D and TProfile3D. Profile histograms are used to display the mean value of Y and its standard deviation for each bin in X. Profile histograms are in many cases an
elegant replacement of two-dimensional histograms : the inter-relation of two measured quantities X and Y can always be visualized by a two-dimensional histogram or scatter-plot; If Y is an unknown (but single-
valued) approximate function of X, this function is displayed by a profile histogram with much better precision than by a scatter-plot.

All histogram classes are derived from the base class TH1

Public Member Functions

virtual

virtual Bool_t

virtual Bool_t

virtual Bool_t

virtual veoid

virtual void

virtual Double_t

virtual Double_t

virtual void

virtual Int_t

virtual Bool_t

virtual Double_t

virtual Double_t

virtual Double_t

virtual void

TObject *

virtual Double_t

~TH1 ()}
Histogram default destructor. More
Add (TF1 *h1, Double_t ¢

Performs the operation

ors are defined (see TH1:Sumwz2), errors are also

Add {const TH1 *h1, Double_t c1=1)
Performs the operation: this = this + rrors are defined (see TH1:Sumwz2), errors are also
Add (const TH1 *h, const TH1 *h2, Double_t ¢1=1, Double_t c2=1)

Replace contents of this histogram by the addition of h1 and h2. More

AddBinContent (Int_t bin)

Increment bin content by 1. More

AddBinContent (Int_t bin, Double_t w)

Increment bin content by a weight w. More

AndersonDarlingTest (const TH1 *h2, Option_t "option="") const

Statistical test of compatibility in shape between this histogram and h2, using the Anderson-Darling 2

AndersonDarlingTest (const TH1 *h2, Double_t &advalue) const
Same function as above but returning also the test statistic value. More
Browse (TBrowser *b)

Browse the Histogram object. More

BufferEmpty (Int_t action=0)

Fill histogram with all entries in the buffer. More

CanExtendAllAxes () const

Returns true if all axes are extendable. More

hi2Test (const TH1 *h2, Optien_t “option="UU", Double_t *res=0) const
2 test for comparing weighted and unweighted histograms More

c
X
c

The computation routine of the Chisquare test. More

Chisquare (TF1 *f1, Option_t *option="") const

Compute and return the chisquare of this histogram with respect to a function The chisquare is computed by
histogram is used. More
ClearUnderflowAndOverflow ()
Remove all the content from the underfiow and overfl
also cleared, since there is no more content in the bins. Mor
Clone (const char "newname=0) const

Make a complete copy of the underlying object. More

Computelntegral (Bool_t onlyPositive=false)

recalculated. More

recalculated. More

sample test. More

hi2TestX (const TH1 *h2, Double_t &chi2, Int_t &ndf. Int_t &igood, Option_t *option="UU", Double_t *res=0) const

ighting each histogram point by the bin error By default the full range of the

v bins, without changing the number of entries After calling this method. every undeflow and overflow bins will have content 0.0 The Sumw2 is

ROOT tie-In

J// Define histogram details
int bins = 58;

double binlo = -3;

double binhi = 3;

// Create histogram _]] e
TH1D *hl = new TH1D("gauss", "Sample Histogram", bins, binlo, binhi};

Creating a pointer to a TH1D class and initializing.

63

ROOT tie-In

// Define inputs for generating random values Fl” that hIStogram Wlth
int points = 5800;
double my = o; 5000 random values drawn

double sigma = 1;

from a Gaussian
// Define histogram details . . .
int bins = 50; distribution.

double binle = -3;
double binhi = 3;

// Create histogram _)) e
TH1D *hl = new TH1D{"gauss", "Sample Histogram", bins, binlo, banhi);

// Create rand object to generate random number
TRandom3 rand;

// Initialize rand object. TRandom3 1s the number generator. The @ argument means use new seed everytime
// This guarantees new random numbers every time the code 1s run.
// Ref: https://root.cern.ch/doc/master/classTRandom. html

rand = TRandom3(@);

// Generate random numbers and fill inte histogram ExerCISe
P ouble. tom — rond.oaus (nussigna) ; Get the above code to compile and run.

o e Before running the code, what do you
expect your histogram to look like? Change
the value of the mu and sigma variable.
Does your histogram change as expected?
To compile with ROOT, you probably need
something like this: g++ myfile.cc -0
roothist “root-config --cflags --libs
(notice: use * and not °)

64

ROOT tie-In

Exercise:
Rewrite the code in the previous slide to not use
pointers.

65

Thank you!

If you have any questions, send me an email or ask in
Discord (#eieioo-cplusplus), and I’ll do my best to
answer!

Email: ian dot lam at queensu dot ca

66

