
C++: A Quick Intro
Summer ParticleAstrophysics Workshop

(EIEIOO)

Ian Lam

12th May 2022

1

About me

• Academic journey:

• B.Math. @ University of Waterloo (2013)

• Ph.D. @ Queen’s University (2020)

• Postdoc @ Carleton University (since 2021)

2

Source: https://imgur.com/gallery/aNmXJZu

Goal of this presentation

• Not a complete tutorial on C++.

• Just enough to get you started.

• Share with you key things I learned over the years.

• My setup:

• Local machine: Windows 10

• MobaXterm SSH Client

• Neutrino server @ Queens (thanks Prof. Ryan Martin
and Mark Anderson)

• Editor: Emacs

3

Intro

• object-oriented programming language i.e.
everything related to classes and objects, along
with attribute and methods, similar to Python

• more complicated than Python
• Python handles many things implicitly like type

declarations.

• more syntax to be aware off than Python
• must declare data type with variables

• must end statement with semicolon

• uses pointers (more later)

4

General workflow

1. Write code with human readable alphabets.

2. Compile the code i.e. translate the human readable
alphabets into instructions the computer can
understand.

3. Compiler will create an executable (.exe) file
which you can run.

• A successful compile does not mean you are 100%
problem free. Running the .exe file can reveal more
issues.

5

Hello World

6

Purpose: Prints “Hello World!” to screen.

Hello World

1. Write the code as shown. Save file as
hello_world.cc

2. Compile by doing: g++ hello_world.cc –o hello

• ‘hello.exe’ file will be created

3. Run by doing: ./hello

7Note: g++ is one of few compilers. ROOT uses a different compiler.

Hello World

#include <iostream>

When writing programs, you might want to reuse
functions from other sources. You can think of
#include as ‘copy-pasting’ code to where the #include
was called. In this case, it is a header file called
‘iostream’ (input-output stream) which contains the
function definitions of ‘cout’ and ‘end’

8

Python:

import library_name

Hello World

using namespace std;

Namespaces can be thought of as a collection of functions,
grouped under a larger umbrella (namespace) in order to
prevent variable definition conflicts.

In this case, we are using the ‘std’ or ‘standard’ namespace.
‘cout’ and ‘endl’ functionalities are defined in here.

You can create your own namespaces but I won’t cover it here.
I personally never found it necessary.

9

Hello World

int main(){…}

Declare a function called ‘main’ that returns a type
int. ‘main’ is a special name, which the compiler
looks for specifically and executes the functions
called in ‘main’ in order.

10

Hello World

cout << “Hello World!” << endl;

cout prints whatever follows after << to the screen. It is
equivalent to Python’s print() function. You can cout variables
as well.

endl means ‘end line’; creates a new line.

<< : stream operator

Note: This is my go-to method to debug code. If your code is
throwing errors and you want to systematically work through
your code, just ‘cout’ stuff at various lines and see where the
code fails or returns something that does not makes sense.

11

Hello World

12

Hello World - Advanced

• I’ll now make some modifications to the hello
world program to illustrate some common concepts.

13

Topic

Declare Variables

Declare Functions

'for' loop

'if' statement

'if…else' statement

'break'

Variable Scope

Global Variable

More C++

Quick link table. Click

to jump to relevant

slides.

Included some exercises

at certain points to get

you to explore on your

own. (Not for course

credit unfortunately )

Hello World – declare variables

• Modify slightly to see how to declare variables.

14

Note: the ‘string’ datatype is under the ‘std’ namespace. If you do not

use ‘using namespace std’, you’ll have to declare string variables

with ‘std::string aString = “Hello World!” ;

Hello World – declare functions

15

Python:

def anotherFunc():

Output

16

Hello World – declare functions

• Order of declaration
and calling matters.

• What if we swapped
the function to
come after main?

17

Output

18

Hello World – declare functions

• Aesthetically, you don’t
want to scroll all the
way down your code to
search for ‘main’.

• Can declare the function
first and define it later.

• Let the compiler know
that such a function
exists so it won’t throw
a fit.

19

Output

20

Hello World – declare functions

21

Functions can take in

inputs/arguments/para

meters.

1) Don’t have to

hardcode.

2) Can reuse same

function with

multiple inputs.

Output

22

Hello World – declare functions

23

Functions can return a value.

Need to specify the type and make

sure it is consistent throughout. If it

isn’t, you’ll know when you compile

and run.

Notice the function declarations

neatly grouped at the top. This can

be collected into a header file

(shown later in slide 49).

Exercise:

For the function increasePrice,

rewrite it such that 0.42 is

passed as an argument.

Hint: increasePrice(double

priceIn, double argIn){…}

Output

24

Hello World – for loop

25

Notes:

• Doesn’t have to be ‘i’. Can be any variable name.

• i++ means ‘increment ‘i’ by 1 but return value of ‘i’ before incrementation.

In for loop implementation like this, it is similar to i = i + 1, or i+=1

Statement 1 (int i=0): Declare

variable and start with 0,

executed once at start.

Statement 2 (i<5): Boolean

condition. If True, continue

execution of code block.

Statement 3 (i++): executed

every time after code block has

been executed.

Output

26

Python equivalent:

for i in range (0,5)
Exercise:

• Increment more than one step.

• Step backwards instead of forward.

• What if you did i<=5 ?

• Increment in steps of 0.1 (hint:

change i from int to double)

Hello World – if statement

27

i==3 : Boolean statement can be

read as “variable i is equal to 3”

Output

28

Exercise:

Try other conditionals like i<=3 , i>=3,

i!=3 (i not equal to 3).

Hello World – if…else

29

else if : check this if above

conditional is false.

else: evaluate this if all

above conditionals are

false.

Note: not necessary to have

‘else if’, ‘else’ for code to run.

If want to check multiple

conditionals, could also use

multiple ‘if’ statements.

Output

30

Hello World - break

31

Stops code block execution.

Exits the loop.

Notice that this if statement has

no accompanying else.

Note: Code executes

sequentially so order matters!

Output

32

Exercise:

Print an exit message (eg: “Bye

bye”) before the break.

Place the break code block further

down the code. Is the effect what

you expect?

Hello World – variable scope

33

Output

34

Hello World – variable scope

35

Output

36

Hello World – variable scope

37

Output

38

Hello World – global variable

39

Global variables, as the

name suggests, can be

accessed by all functions

everywhere in the code.

Usually prefixed with

lowercase ‘g’.

WARNING: Be careful

when using global

variables. Their global

scope means that any

modification could break

other functions.

Output

40

Hello World - const

41

Prevents modification to

variable.

Global variables + const is

useful to hardcode physical

constants.

Output

42

Summary

• Have shown the most common methods.

• This is a non-exhaustive list but should be sufficient
to get started.

43

More C++

• We’ve seen various terminologies like ‘classes’ and
‘headers’.

• Probably a key phrase tossed around with regards to C++ is
‘pointers’.

• Don’t worry if you don’t grasp it completely now.

44

Topic

Classes

Headers

Pointers

ROOT tie-in

Quick link table

Classes

• As mentioned, C++ is an object-oriented
programming language, similar to Python.

• Classes can be thought of as defining a set of
properties and behavior/functions an object should
have.

• Object is a specific instance created from a class.

• Depending on the class of the object, properties and
functions of the object will differ.

45

Classes: Baskets

• Say you have a fruit shop with fruits in baskets. Some
properties of the baskets could be ‘name of fruit’,
‘amount’, ‘color’.

• Some functions you would like to perform on a basket
could be ‘count amount of fruit’, ‘add a fruit’, ‘remove
a fruit’.

• You could construct a class called Basket.

• You can then create an instance of a Basket (object),
such as 20 apples. A function would be ‘add 3 more
green apples to the basket’.

• Actually, lets make this class!

46

Classes: Baskets

47

Constructor: Initializes the object.

‘public’ : access specifier. Tells

how members of the class can be

accessed. ‘public’ means accessible

by everyone. ‘private’ means

accessible only to members of the

class.

Recall: x += y is equivalent to x = x +

y

Tip: x*=y is equal to x = x*y

(* means multiply here)

Note: “ // ” is for

commenting.

Output

48

Exercise:

Change ‘public’ to ‘private’. Did anything change? Why

or why not?

Explore the ‘private’ access specifier by creating one and

try to access it in various parts of your code.

Headers

• In all our examples so far, the ‘main’ function is in
the same file as our classes and function definitions.

• Alright for relatively simple code but can become
messy as code grows in length and complexity.

• Also, would be good to re-use code without
explicitly copy-pasting.

• Can do this with headers.

49

basket.h

50

This is called the ‘header’ file.

Header guard. Prevents the same header

file to be added twice during compile.

Not required for compilation but highly

recommended, especially for complicated

code. Just do it.

basket.cc

51

Recall that #include is basically

copy-pasting the contents of

basket.h here.

Necessary. Otherwise, the

compiler won’t know the

definitions of the functions here.

Recall slide 17 .

basketsample.cc

52

Exercise:

In the header file and its matching cpp

file (basket.h, basket.cc) , there is only

one class defined in there. Recall the

functions defined in slide 23

(anotherFunc and increasePrice).

Incorporate those functions into the

basket.h and basket.cc and make sure

they are callable.

Pointers

• Variable that stores the memory address of another
variable

• Allows modification of a variable directly rather
than copying

• Copying can be expensive memory-wise if it is large.
Particle physics data ROOT trees is an example.

• When passed to a function, variables are copied.

• Instead, can pass a pointer to the function instead,
allowing direct modification of value stored at address.

53

Pointers (oversimplified)

54

Memory with address

0x523

Variable

stored in

Pointer
stored in

*

&

Allows you to modify the variable directly as

stored in memory.

Pointers

• Pointers ‘point to’ the variable whose address they
store.

• ‘*’ is called the ‘dereference operator’. Access the
variable the pointer is pointing to directly.

• ‘&’ is called the ‘address-of operator’

• ‘*’ is also used when declaring a pointer.

• ‘->’ can be thought of as a dereference operator
followed by a dot.

55

Variable:

object.method()

Pointers:

object->method()

(*object).method()

basketsample.cc

56

Note: Example of

bulk commenting.

Output

57

Pointers - Note

• If you use pointers, you HAVE to delete them after you
are done. (Notice the delete in slide 56)

• Not so important in simple code like this but especially
important if you are pushing pointers through loops.

• If you forget to delete a pointer, and you create a new
object with the same pointer name, you’ll get a memory
leak. NOT GOOD.

• Deletion frees up memory. If you are running a program
and you notice that your memory consumption is high
and climbing, you probably have a memory leak that
could be due to undeleted pointers.

• Order of deletion also matters. ‘LIFO’ : Last In First
Out.

58

Pointers - Note

• Notice I kept pointers till the end. It goes to show
that you can do a lot without having to use pointers.

• However, ROOT depends quite a lot on pointers, so
you should get comfy.

59

ROOT tie-in

• With all this in mind, you should be able to look up
various ROOT classes and use them effectively.

• Example: type ‘root cern th1’ in Google.

• TH1 : 1D histogram class for ROOT

• TH1D : 1D histogram of the type ‘double’.

• TH1F : 1D histogram of the type ‘float’, etc.

60

61

62

ROOT tie-in

63

Creating a pointer to a TH1D class and initializing.

ROOT tie-in

64

Fill that histogram with

5000 random values drawn

from a Gaussian

distribution.

Exercise:

Get the above code to compile and run.

Before running the code, what do you

expect your histogram to look like? Change

the value of the mu and sigma variable.

Does your histogram change as expected?

To compile with ROOT, you probably need

something like this: g++ myfile.cc -o

roothist `root-config --cflags --libs`

(notice: use ` and not ‘)

ROOT tie-in

65

Exercise:

Rewrite the code in the previous slide to not use

pointers.

Thank you!

66

If you have any questions, send me an email or ask in

Discord (#eieioo-cplusplus), and I’ll do my best to

answer!

Email: ian dot lam at queensu dot ca

