/37

Everything* you didn't know
you needed

*blatant marketing nonsense
Kilian Lieret and Henry Schreiner
Princeton University
CoDaS-HEP school 2022

Slides available as €) open source, contributions welcome.

8/5/2022

Tor any IPython system

https://github.com/klieret/everything-you-didnt-now-you-needed

/37

Pre-com m|t hoo kS @ = & Making it practical:

= The pre-commit framework is a python

Run small checks before you commit oackage that makes configuring pre-

= 1? Problem: How can | stop myself from commit hooks easy!
committing low-quality code? = All hooks are configured with a single
= , Solution: " .pre-commit-config.yaml file
m git hooks allow you to run scripts that are = Few-clicks GitHub integration available: pre-
triggered by certain actions commit.ci
= a pre-commit hook is triggered every time = L Setting it up:
you run git commit’ 1. pipx install pre-commit’

» in principle you can set them up yourself 2. cd <your repo>"
by placing scripts into . git/hooks' 3. ‘touch .pre-commit-config.yaml"
4. pre-commit install’

5. Profit &

Tor any IPython system

https://pre-commit.com/
https://pre-commit.ci/

Pre-commit hooks ¢

A config that will always be useful. Optional pre-commit.ci Cl service.

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks

rev:
hooks:

- repo:

id:
id:
id:
id:
id:
id:

rev:

'v4.3.0'

check-added-large-files
check-case-conflict
check-merge-conflict
detect-private-key
end-of-file-fixer
trailing-whitespace

https://github.com/codespell-project/codespell
'v2.1.0'

hooks:

ci:

See https://scikit-hep.org/developer/style for many more, updated weekly!

id:

codespell

autoupdate_schedule: monthly

/37

Tor any IPython system

https://scikit-hep.org/developer/style

/37

Pre-commit hooks for python!

- repo: https://github.com/psf/black
rev: '22.6.0'
hooks :
- id: black
= id: black-jupyter
= repo: https://github.com/PyCQA/flake8
rev: '5.0.1'
hooks :
- id: flake8
additional_dependencies: ['flake8-bugbear']
= repo: https://github.com/pre-commit/mirrors-mypy
rev: 've.971'
hooks:
= id: mypy
= repo: https://github.com/asottile/pyupgrade
rev: 'v2.37.2'
hooks:
= id: pyupgrade
args: [--py37-plus]

= Try it out: Go here for a quick step-by-step tutorial

Tor any IPython system

https://github.com/klieret/python-pre-commit-demo-tutorial

/37

Hot code reloading + More granular.
= 1? Problem: i:ﬁzﬁ TiEOdUIG

1. | have some code in a notebook and some

code in a python file. imp.reload(mymodule)

2. l update my python file.
= Warning: These tricks don't always work and

3. Do | have to restart the kernel and rerun to - . _
there's some additional tricks (e.g., you might

see the changes? _
need to re-run from mymodule import X lines)

=, Solution: No! Python supports a number of] . .
= Try it out! Follow our instructions here.

ways to "reload" imported code.
= Easiest example: Add the following to your
Jupyter notebook! to reload all (I) modules

every time you execute code

%load_ext autoreload
%autoreload 2

Tor any IPython system

https://github.com/klieret/everything-you-didnt-now-you-needed/tree/main/examples/hot_code_reloading

Cookiecutter

1? Problem: Setting up e.g., a python package
with unit testing/CI/CD, pre-commits, license,
packaging information, etc., is a lot of
"scaffolding" to be added.

. Solution: Creating templates

& Making it practical: cookiecutter is a

command line utility for project templates

/37

Examples:

= scikit-hep project template: All the features,

all the best-practices
= my personal python template: Fewer

options, easier to read (I think;))

Pro-tip: cruft is a cookiecutter extension

that allows to propagate updates to the
template back to the projects that use it

Trying it out:

pipx install cookiecutter

cookiecutter https://github.com/scikit-hep/cookie/

Tor any IPython system

https://pypi.org/project/cookiecutter/
https://github.com/scikit-hep/cookie/
https://github.com/scikit-hep/cookie/
https://cruft.github.io/cruft/

/37

SSH Config

= 1? Problem: Typing long servernames and potentially tunnelling can be tiresome

= , Solution: Create configurationin ~/.ssh/config . You can even add pattern matching!

Host tiger*
Hostname tiger.princeton.edu
User k15675

Host tigressgateway
Hostname tigressgateway.princeton.edu
User k15675

Host *-t
ProxyCommand ssh tigressgateway -W %h:%p

Now you can use ssh tiger or ssh tiger-t depending on whether to tunnel or not.

Tor any IPython system

SSH Escape Sequences

1? Problem: | already have an SSH session. How can | quickly forward a port?

. Solution: SSH Escape Sequences:

Hit enter ~ ¢ (NOw you should see a ssh> prompt)
Add -L 8000:1localhost:8000 Enter to forward port 8000
You can add any other option (e.g., -X) to modify your existing connection

More escape sequences available!

/37

Tor any IPython system

Autojump

= 1? Problem: Changing directories in the terminal is cumbersome.

= _ Solution: Autojump learns which directories you visit often. Hit 'j <some part of directory
name> to directly jump there

= |nstallation instructions on github

Usage:

cd codas-hep

cd ../../my-directory
cd some-subfolder

j codas

Tor any IPython system

https://github.com/wting/autojump

/37

Terminal kung-fu

= . You can quickly search through your terminal history with ctr1 Rr

= _ You can reference the last word of the previous command with IS
mkdir /path/to/some/directory/hello-world
cd 'S

= . Many more tricks! Read up on your shell!

If you're using bash ', consider switch to 'zsh' (almost completely compatible) and install
‘oh-my-zsh ' to get beautiful prompts, autocomplete on steroids and many small benefits

S ~/D/P/x~
~/Document/Projects/xonsh/
$ part-
this-is-part-of-a-filename

Tor any IPython system

/37

Tracking Jupyter notebooks with git

1? Problem: Tracking & collaborating on Jupyter notebooks with git is a mess because of binary

outputs (images) and additional metadata:

= git diff becomes unreadable

= merge conflicts appear often

. Solutions: You have several options

1. Always strip output from notebooks before committing (easy but half-hearted)

2. Synchronize Jupyter notebooks and python files; only track python files (slightly more
advanced but best option IMO)

3. Do not change how you track Jupyter notebooks; change how you compare them (use if you
really want to track outputs)

4. Avoid large amounts of code in notebooks so that the issue is less important; create python

packages and use hot code reloading instead

Tor any IPython system

/37

Tracking Jupyter notebooks with git

Option 1: Track notebooks but strip outputs before committing. Add the following pre-commit
hook:

- repo: https://github.com/kynan/nbstripout
rev: 0.5.0
hooks :
- id: nbstripout

Option 2: Synchronize Jupyter notebooks (untracked) to python files (tracked)

pipx install jupytext
echo "*.ipynb" >> ~/.gitignore
jupytext --to py mynotebook.ipynb

git commit mynotebook.py -m "..."
git push

git pull
jupytext --sync

jupytext --sync
git commit ... && git push ...

ey e .1 SYyStEM

Avoiding dependency hell

= 1? Problem: Python packages depend on other packages depending on other packages
causing a conflict.

m , Solution: Use conda or virtual environments (venv ', virtualenv ', virtualenvwrapper);

The first environment should be named .venv'

The Python Launcher for Unix, py picks up " .venv automatically!

Visual Studio Code does too, as do a growing number of other tools.

1? Problem: What about pip -installable executables?

, Solution: Install them with pipx instead of pip ! Examples:

m pre-commit - black . cookiecutter - uproot-browser’

You can also use pipx run' toinstall & execute in one step, cached for a week!

/37

Tor any IPython system

/37

Lockfiles

= 1? Problem: Upgrades can break things.
= @ Not a solution: Don't add upper caps to everything' Only things with 50%+ chance of

breaking.

m , Solution: Use lockfiles.

Your Cl and/or application (including an analysis) should have a completely pinned environment
that works. This is not your install requirements for a library!

pip install pip-tools
pip-compile requirements.in

Now you get a locked requirements file that can be installed:

pip install -r requirements.txt

Tor any IPython system

/37
Locking package managers
Locking package managers (pdm’, poetry’, pipenv) give you this with a nice all-in-one CLI:

pdm init

pdm add numpy
You'll also have a pdm.lock file tracking the environment it created. You can update the locks:
pdm update

Read up on how to use the environment that this makes to run your app.

Tor any IPython system

/37

Task runners

1? Problem: There are lots of way to setup environments, lots of ways to run things.

m , Solution: A task runner (nox, tox, hatch) can create a reproducible environment with no setup.

Nox is nice because it uses Python for configuration, and prints what it is doing.

import nox

def tests(session):
session.install(".[test]")
session.run("pytest")

Tor any IPython system

Mm/37
Task runners

= 1? Problem: There are lots of way to setup environments, lots of ways to run things.

m , Solution: A task runner (nox, tox, hatch) can create a reproducible environment with no setup.
= Nox is nice because it uses Python for configuration, and prints what it is doing.

import nox

def %?fts(session: nox.Session) -> None:

Run the unit and regular tests.

session.install(".[test]")
session.run("pytest", *session.posargs)

Tor any IPython system

Task runners

Example 1: adapted from PyPA/manylinux’

@nox.session(python=["3.9", "3.10", "3.11"])
def update_python_dependencies(session):
session.install("pip-tools")
session.run(
"pip-compile", # Usually just need this
"--generate-hashes",
“requirements.in", # and this
"--upgrade",
"--output-file",
f"requirements{session.python}.txt",

_ ® W O N o o WOWN -

_

Example 2: python.packaging.org’

@nox.session(py="3")

def preview(session):
session.install("sphinx-autobuild")
build(session, autobuild=True)

AW N -

00 NOoO ok~ ODN =

N NN NMNNAQ 2@ A @A a2 a a a o
AP WON -2 © OO0 NO U A WODN -2 © VO

/37

@nox.session(py="3")
def build(session, autobuild=False):

session.install("-r", "requirements.txt")
shutil.rmtree(target_build_dir,
ignore_errors=True)

if autobuild:
command = "sphinx-autobuild"
extra_args = "-H", "0.0.0.0"
else:
command = "sphinx-build"
extra_args = (
"--color",

"--keep-going",

session.run(
command, *extra_args,
"-j3", "auto",
“-b", "html",
Tt
*session.posargs,
"source", "build",

Tor any IPython system

/37

pytest tricks (config)

Reminder: https://scikit-hep.org/developer/pytest is a great place to look for tips!

And reminder: pytest looks like this:

def test_funct():
assert 4 == 2%%*2

Let's start with the first tip: your project.toml file should look like this:

[tool.pytest.ini_options]

minversion = "6.0"

addopts = ["-ra", "--strict-markers", "--strict-config"]
xfail_strict = true

filterwarnings = ["error"]

log_cli_level = "info"

testpaths = ["tests"]

Tor any IPython system

https://scikit-hep.org/developer/pytest

pytest tricks (running)

‘--showlocals : Show all the local variables on failure

--pdb : Drop directly into a debugger on failure

‘--trace --1f :Run the last failure & start in a debugger

You can also add breakpoint() inyour code to get into a debugger

/37

Tor any IPython system

pytest tricks (running)
Approx

def test_approx():
0.3333333333333 == pytest.approx(1 / 3)

This works natively on arrays, as well!

Test for errors

def test_raises():
with pytest.raises(ZeroDivisionError):

1/ 0

Marks

. ("sys.version_info >= (3, 7)")
def test_only_on_37plus():
x =3
assert f"{x = }" == "x = 3"

/37

Fixtures allow reuse, setup, etc

There are quite a few built-in fixtures. And you
can write more:

(

params=["Linux", "Darwin", "Windows"],
autouse=True)
def platform_system(request, monkeypatch):
monkeypatch.setattr/(
platform, "system", lambda _: request.param)

def test_thing(platform: str):
assert platform in {"Linux", "Darwin", "Windows"}

Monkeypatching

System 1O, GUls, hardware, slow processes; there
are a lot of things that are hard to test! Use
monkeypatching to keep your tests fast and
"unit".

Tor any IPython system

/37

Type checking

= 1? Problem: Compilers catch lots of errors in compiled languages that are runtime errors in
Python! Python can't be used for lots of code!
= Solution: Add types and run a type checker.

Typed code looks like this:

def f(x: float) -> float:
y = X**%2
return y

= Functions always have types in and out

= Variable definitions rarely have types
How do we use it?

mypy --strict tmp.py
Success: no issues found in 1 source file

Some type checkers: MyPy (Python), Pyright (Microsoft), Pytype (Google), or Pyre (Meta).

Tor any IPython system

/37

Type checking (details)

= Adds text - but adds checked content for the reader!

= External vs. internal typing

= Libraries need to provide typing or stubs can be written

= Many stubs are available, and many libraries have types (numpy, for example)

= An active place of development for Python & libraries!

from __future__ import annotations

def f(x: int) -> list[int]:
return list(range(x))

def g(x: str | int) -> None:
if isinstance(x, str):
print("string", x.lower())
else:
print("int", x)

Tor any IPython system

/37

Type checking (Protocol)

But Python is duck-typed! Nooooooo!

Duck typing can be formalized by a Protocol:

from typing import Protocol

class Duck(Protocol):
def quack() -> str:

def pester_duck(a_duck: Duck) -> None:
print(a_duck.quack())

class MyDuck:
def quack() -> str:
return "quack"”

if typing.TYPE_CHECKING :
: Duck = typing.cast(MyDuck, None)

Tor any IPython system

/37

Type checking (pre-commit)

- repo: https://github.com/pre-commit/mirrors-mypy
rev: "ve.971"
hooks :
- id: mypy
files: src
args: []
additional_dependencies: [numpy==1.22.1]

Args should be empty, or have things you add (pre-commit’s default is poor)

Additional dependencies can exactly control your environment for getting types

Benefits

Covers all your code without writing tests

» |ncluding branches that you might forget to run, cases you might for forget to add, etc.
Adds vital information for your reader following your code

All mistakes displayed at once, good error messages

Unlike compiled languages, you can lie if you need to

You can use mypyc tocompile (2-5x speedup for mypy, 2x speedup for black) :)
or any IPython system

/37

ACT (for GitHub Actions)

= 1? Problem: You use GitHub Actions for everything. But what if you want to test the run out
locally?

= , Solution: Use ACT (requires Docker)!

act

act pull_request -j test

If you use a task runner, like nox, you should be able to avoid this most of the time. But it's handy
in a pinch! https://github.com/nektos/act

Tor any IPython system

https://github.com/nektos/act

/37

Python libraries: Rich, Textual, Rich-cli

Textualize is one of the fastest growing library families. Recently Rich was even vendored into Pip!

#H## progress bar demo (Using Python 3.11 TaskGroups, because why not)

from rich.progress import Progress
import asyncio

async def lots_of_work(n: int, progress: Progress) -> None:
for i in progress.track(range(n), description=f"[red]Computing {n}..."):
await asyncio.sleep(.1)

async def main():
with Progress() as progress:
async with asyncio.TaskGroup() as g:
g.create_task(lots_of_work (40, progress))
g.create_task(lots_of_work(30, progress))

asyncio.run(main())

Tor any IPython system

Rich: Beautiful terminal
output

Rich is not just a "color terminal" library.

= Color and styles

= Console markup

= Syntax highlighting

= Tables, panels, trees

= Progress bars and live displays
= Logging handlers

= |[nspection

= Traceback formatter

= Render to SVG

kethroush, [TAEETIS, and even blir

/37

Tor any IPython system

/37

Textual: GUI? No, TUI!

New "CSS" version coming soon!

Tor any IPython system

Rich-cli: Rich as a command
line tool -

Rich cL1

Usage: rich [OPTIDNS]

°
rich loop.py

o,
Iterable, Tuple, TypeVar it
Display a horizont.
) = al rule.
Typevar("T") . Ow Display as json. =
- hez Display as markdown.
c Display first LINES of the file.
5 Display last LINES of the file.
(values: Iterable[T]) -> Iterable[Tuplel o TI8 ft iqigketemijz code.
n s — wun o o left.
! Iterate and generate a tuple with a flag for first value. Align to right
iter_values = (values) . Align to center.
e Justify text to left.
. N ! Justify text to right.
value = (iter_values) xt t Justify text to center.
. x v Justify text to both left and right edges.
Enable soft wrapping of text (requires --p
S d Expand to full width (requires --panel).
, value v d Fit output to SIZE characters.
i : Set maximum width to SIZE characters.
value iter_values: E 3 Set text style to STYLE.
, value le Set rule style to STYLE.)
CHARACTER Use CHARACTER to generate a line with
TOP,RIGHT,BOTTOM,LEFT Padding around output
BOX Set panel type to BOX.

1 YLE Set the panel style to STYLE (requires
: %HEME st Set syntax theme to THEMa
: line number in syntax.)
E::E}.i indentation guides in S)‘/ntax highlighting
Use LEXER for syntax highlighting.
Kkdown
hyperlinks in mar
Re"qirwoiﬁ wrap syntax highlighted files.

- . C v 1.
Gl (Lbmewy le set panel cap ot writing to a termind

Force termina

write HTML t

Show this messag

E
1 output when n

o PATH.
e and exit.

Rich contains a number of builtin renderables you can use to create elegant output in
your CLI and help you debug your code.

Click the following headings for details:

The Console object has a log() method which has a similar interface to print(), but also
renders a column for the current time and the file and line which made the call. By
default Rich will do syntax highlighting for Python structures and for repr strings. If
you log a collection (i.e. a dict or a list) Rich will pretty print it so that it fits
in the available space. Here's an example of some of these features.

rich.console Console
console = Console()

or any IPython system

/37

WebAssembly

= 1? Problem: Distributing code is hard. Binder takes time to start & requires running the code
one someone else’'s machine.
= Solution: Use the browser to run the code with a WebAssembly distribution, like Pyodide.

Python 3.11 officially supports it now too! Binaries may be provided around 3.12!
Pyodide

A distribution of CPython 3.10 including ~100 binary packages like SciPy, Pandas, boost-histogram
(Hist), etc.

Examples:

= https:/henryiii.github.io/level-up-your-python/live/lab/index.html

PyScript

An Python interface for Pyodide in HTML.

Tor any IPython system

https://henryiii.github.io/level-up-your-python/live/lab/index.html
https://scikit-hep.org/developer/reporeview

/37

WebAssembly - PyScript

1 <! >

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <meta name="viewport" content="width=device-width, initial-scale=1">
6 <title>Hello, World!</title>

7 <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" />
8 <script defer src="https://pyscript.net/alpha/pyscript.js"></script>
9 </head>
10 <body>
11 <py-script>print("Hello, World!")</py-script>

12 </body>
13 </html>

https://realpython.com/pyscript-python-in-browser

Tor any IPython system

https://realpython.com/pyscript-python-in-browser

/37

Modern packaging

= 1? Problem: Making a package is hard.
= Solution: It's not hard anymore. You just need to use modern packaging and avoid old

examples.

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "package"
version = "0.0.1"

Other metadata should go there too, but that's the minimum. See links:

= https://scikit-hep.org/developer/pep62]

‘scikit-hep/cookie supports 11 backends; hatching is recommended for pure Python. For

compiled extensions: See next slides(s). &
Tor any IPython system

https://scikit-hep.org/developer/pep621
https://packaging.python.org/en/latest/tutorials/packaging-projects

/37

Binary packaging

= 1? Problem: Making a package with binaries is hard.

= _ Solution: Some parts are easy, and I'm working on making the other parts easy too!

Tor any IPython system

/37

Making the code

Use a tool like pybind1l, Cython, or MyPyC. It's hard to get the C API right!

#include <pybind11/pybind11.hpp>
int add(int i, int j) {
return i + j;

}

PYBIND11_MODULE (example, m) {
m.def("add", &add);
}

Header only, pure C++! No dependencies, no pre-compile step, no new language.

Tor any IPython system

Configuring the build

I'm working on scikit-build for the next three
years! CMake for Python packaging.

Currently based on distutils & setuptools - but
will be rewritten!

Org of several packages:

Scikit-build
= CMake for Python
= Ninja for Python
= moderncmakedomain

= Examples

/37

Tor any IPython system

Building the binaries GitHub actions example
Redistributable wheel builder. on: [push, pull_request]
jobs:
= Targeting macOS 10.9+ build_wheels:
. . runs-on: ${{ matrix.os }}
= Apple Silicon cross-compiling 3.8+ Sireey
= All variants of manylinux (including emulation) "‘a(t):’“
= musllinux - ubuntu-22.04
- windows-2022
= PyPy 3.7-39 - macos-11
= Repairing and testing wheels .

. actions/checkout@vé
» Reproducible pinned defaults (can unpin) HSEs ACTIONS/ENECottiy

- name: Build wheels

Local runs supported too! uses: pypa/cibuildwheel@v2.8.1

- uses: actions/upload-artifact@v3
with:
path: ./wheelhouse/*.whl

pipx run cibuildwheel --platform linux

/37

Tor any IPython system

