Machine Learning:
Introduction to Deep Learning, Convolutional Neural Networks

Schedule for This Part

e Introduction to Machine Learning, Decision Trees

e Introduction to Deep Learning, Convolutional Neural Networks:

o Artificial (Deep) Neural Networks
o Convolutional Neural Networks

Unsupervised Machine Learning, Autoencoders
e Introduction to Graph Neural Networks

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Frameworks

e We will work with PyTorch.
e Alternatively TensorFlow and Keras are a popular choice.

° TensorFlow ° PyTorch‘

Software Computer application

Keras)
Software + Add comparison

Worldwide v 11/16-7/1/22 ~ All categories ¥ Web Search v

Interest over time

&
A

_—

II e

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/

Brief History of Artificial Neural Networks

e 1943: McCulloch & Pitts: simple neural networks with electrical circuits
e 1958: Rosenblatt: works on perceptron

e 1959: Widrow & Hoft: first neural network applied to real world problem (ADALINE)

e 1969: Minsky & Papert: proved limitations of perceptron
e 1986: Rumelhart, Hinton & Wiliams: backpropagation for multi-layer perceptron =y

e 2012: Krizhevsky: CNN (AlexNet) wins image recognition competition

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Artificial Neural Networks

e You’ve just learned about BDTs.
What about highly non-linear data?
Big datasets?
Data with many input features (like images)?
e We can transform the input space but we often don't know how a priori

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous

function arbitrary well, given enough hidden units
Hornik 1991

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Artificial Neural Networks

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous

function arbitrary well, given enough hidden units
Hornik 1991

import matplotlib.pyplot as plt
import numpy as np

f = lambda x: 0.2 + @.4*x**3 + 0.3*x*np.sin(15*x) + @.05*np.cos(20*x)
X = np.linspace(-1,1., 1024)
y = f(X)

plt.plot(X, y, '-', alpha=0.5, lw=2);

08

06

04

02

0.0

-1.00 -0.75 -050 -0.25 000 025 050 075 100

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Artificial Neural Networks

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous

function arbitrary well, given enough hidden units
Hornik 1991

import torch
from utils import ShallowNN

model = ShallowNN()

model .load_state_dict(torch.load('./media/universal_approximator'))
model .eval()

print(model)

ShallowNN(
(regressor): Sequential(
(0): Linear(in_features=1, out_features=2000, bias=True)
(1): ReLU(inplace=True)
(2): Linear(in_features=2000, out_features=1, bias=True)
)
)

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Artificial Neural Networks

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous

function arbitrary well, given enough hidden units
Hornik 1991

y_pred = model(torch.Tensor(X).unsqueeze(1l))

plt.plot(X, y, '-', alpha=0.5, lw=2);
plt.plot(X, y_pred.data.squeeze().numpy(), lw=2);

10

08

06

04

02

00

-100 -075 -0.50 -025 000 025 050 075 100

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Artificial Neural Networks

1 Aug 2022 - 5 Aug 2022

e Neural networks are inspired by biological neurons.

x: neuron (node) input;
w: neuron weight;

b: bias;

f: activation function

impulses carried
toward cell body

branches

dendrites

[>~ axon

nucleus terminals

impulses carried
away from cell body

) wo
synapse
WoZTo

axon from a neuron

cell body

¥ <Zw,~z,- +b>
Zwia:i +b '

output axon

activation
function

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Credit

https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc

Artificial Neural Networks

e Neural networks are inspired by biological neurons.
Affine transformation of the input data.
e Followed by (non-linear) activation, e.g. sigmoid function Tt

z = np.linspace(-10,10., 1024)
y = torch.sigmoid(torch.tensor(z)).numpy()

O plt.plot(z, y, '-', alpha=0.5, lw=2);
a

10
Z = woxo + wix1+...+wyx, + b = w!x
a=o(z)

08

06

04

02

0.0

-100 -75 -50 -25 00 25 50 75 100

e Nodes are combined into layers.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

From Neuron to Network

e A shallow neural network, given wide enough hidden layer should approximate well a given
function f. In practice this is quite difficult...

Stacking more layers instead improves performance. Why?
e Space folding:

Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially identify
symmetries in the boundary that it needs to learn. Source

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

11

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

More Activation Functions

e Sigmoid. Expensive, saturates for low and high output.

e ReLU. Non-negative, cheap but dies for x < 0.

e Leaky ReLU. Non-zero for negative values.

e Softmax,

1 Aug 2022 - 5 Aug 2022

Ti

¢
Z}']—l e’

Produces probability over classes, i.e. use it for classification.

Visualizations from Wikipedia

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

12

https://en.wikipedia.org/wiki/Activation_function

Question Interlude

e How many hidden layers does this network have?

)
?4‘?‘{.?&%{.?4"‘{“\(:
O O (0 :

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

13

Inference (Feed-forward Pass)

1 Aug 2022 - 5 Aug 2022

n m P
1 1 2 1 1 J (3 3 3
a’ = oY w"x; +bV) a’ = o) wal’ +b?) n=fQwa + %)
i=1 i=1 i=1

(1)
G! mwl m /(2\ 3)
\\ al a aj

KRR

LN

A%

Nt

(2) W(3) h(i) - o_(w(i)h(i—l] + b(l))

VY %y o™
\WAVAVZ

W(Il

h(1) e hm

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

14

Training Neural Network

® For the pair of input x; and corresponding label y.. We want to minimize the loss function E.

e Loss function quantifies how well the model is achieving the learning objective, e.g. mean
squared error _i(i’. -»? Or cross-entropy loss —(ylog(p) + (1 - y)log(1 —p)) .

e Model parame'i]ers 0: weights and biases.

e X s described by a vector of variables, aka features.

Solution:

e Inefficient: Random search of 8, for which we minimize E.
e Much better: Neural networks layers are differentiable, we can use gradient descent.
e Another alternative: hebbian learning.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

15

Gradient Descent

e We normally minimize things by evaluating the derivatives (direction towards minimum).

e Gradient descent computes the gradient of the cost function w.r.t. to the current
parameters 0 for the entire training dataset.

e At each training step k update model parameters to move towards steepest decline:
0., < 0, —n VJO) where J(0) is the cost and 7 is the step size and is the time

e Adjustment step is determined by learning rate # (hyperparameter).

Jw) t

> W

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022) 16

Chain Rule

e Computing derivatives of a base function: decompose composite function into a set of base
ones and differentiate them one by one.

fu_’:s] 9z

(2) 0z Oy oz

T _mEe

o = V@) w)

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

17

Backpropagation

Backward propagation of errors
e Simple: inputs forward, errors go backward.
e Make forward pass through the network to calculate the output and the corresponding loss.

e Do a backward pass go back through the network to calculate gradients for all weights.

e Updates to parameters are propagated from the output of the network using the chain rule.
e Update parameters with their gradients and repeat until convergence.

e Use dynamic programming: collect derivatives at each step without recalculating them.

® One epoch is a forward and backward pass over the full-dataset.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022) 18

Practise: Choices of the Learning Rate

e Choice of the learning rate is critical for the successful training.

W w—n—
dw
L{w) L(w) L(w)
Learning rate too low Good learning rate High learning rate Learning

Learning rate much too high

Llw)

High learning rate

Learning rate too low

Good learning rate

epoch

e There is no fixed rule: depends on the dataset, network.

1 Aug 2022 - 5 Aug 2022

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Credit

19

https://www.bdhammel.com/learning-rates/

Gradient Descent Variants

(mini-batch) Stochastic Gradient Descent (SGD): use random minibatch of examples.
Adagrad: adjusts the learning rate to individual features.
Momentum: add a fraction of previous gradient to update vector.
RMSprop: use a moving average of squared past gradients.

Adam: RMSProp with momentum and bias correction.

Just use Adam.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Credit

20

https://web.stanford.edu/~jduchi/projects/DuchiHaSi10.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1412.6980
https://twitter.com/alecrad

Hyperparameters

e Single change in optimization procedure, network architecture or data pre-processing can
make or break your model.
e Rules are loose, it is more like art to adjust the hyperparameters.

e What:
O numberofepochs,
o batch size, learning rate,
o 1nitialization,
o choice of activation layers, network depth/width (architecture)
o and many more...

manual (experience and/or luck),

grid searches (random),

surrogate models (bayesian optimization, reinforcement learning),
specialized software: Ray / AutoKeras.

O O O O

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

21

https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://autokeras.com/

Question Interlude

e (Can you describe this situation?

Train

Q Validation

/

\

\

-

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

22

Overfitting

Underfitting (low variance, high bias) with poor train and test results.

e Model is too simple or it can’t capture underlying data structure.
e Solution is to increase model capacity or train longer.

Overfitting (high variance, low bias) with good training error but bad test results.

Model captures noise instead of the input structure (low generalization).
Model has too much capacity.
Solution 1: terminate training before this happens, 1.e. early stopping.

Solution 2: limit capacity of the model by regularization, reduce generalization error but not
the training error.

o Lasso or ridge regularization.

o Dropout.

o Data augmentations, transformations of input, e.g. rotations. etc.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

23

Early Stopping

Early stopping is beautiful free lunch Source

e When to stop training? After predefined number of steps? Can be too late or too early.
e Early stopping: stop your training (with some patience) if your validation error does not
improve enough.

Train
Validation

=7
\‘\

-

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022) 24

http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

L1/ L2 Regularization

Limit the capacity of the model by penaling the value of weights.

L1 regularization (Tikhonov): absolute value of weights foi sparsity (feature selection): ,\i 16|
L2 regularization (LASSO): penalize square of weights: 1Y~ ¢? =

M is a hyperparameter. -

In Pytorch L2 regularization is called weight decay.

W, w,

) S
S,

L1 L2

w

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Dropout (Paper)

e Adding noise to hidden layers makes networks more robust to initialization, and results in
better generalization.

e Dropout is a simple way to execute that by randomly set some neuron weights to zero with
probability p.

e Another interpretation: at each step train a new subnetwork to break co-adaptation of nodes

(b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

26

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Batch Normalization (Paper)

When training, parameters update in different scale, and the initial normalization is lost.
When the input distribution to a learning system changes, it is said to experience covariate shift.
e Training procedure is sensitive to the scale of gradients:
o Vanishing gradients: gradients getting smaller and smaller as the backpropagation
progresses: no updates.
o Exploding gradients: gradients getting larger and larger as the backpropagation
progresses, very large updates.
e Add an operation just before or after the activation function of each hidden layer.
e The layer lets the model learn the optimal scale and mean of each of the layer’s inputs using

running mean and standard deviation of the input over the current mini-batch.
z — E[z]

\,v"""V ar(z] + €

e Less sensitivity to initialization parameters.

Y= *"y‘{ﬁ

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

https://arxiv.org/pdf/1502.03167.pdf

Weight Initialization

e Another way to address vanishing and exploding gradients is through weight initialization.

e We initialize the weights randomly, sampling from a normal distribution, p=0 and c=1.
e This results in a wide range.
e We can ensure that the weights are closer to 0, which works better.

e Xavier initialization normal distribution with u=0 and o?=n"!, where n is the number of
inputs, use it for non-ReLLU blocks.

e He initialization: p=0 and o*=2n"!, use for blocks with ReLU.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

28

http://proceedings.mlr.press/v15/glorot11a.html
https://arxiv.org/abs/1502.01852

Computer Vision

A huge subfield of deep learning dealing with image classification, object detection, segmentation
or tracking, depth estimation, 3d reconstruction etc.

Challenges:

e Large dimensionality of the input, e.g. HD image has close to 1M pixels.
e Results must be invariant to shifts, rotation, different light conditions etc.
e Images can contain several objects from multiple categories or multiple instances from one.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

29

Convolutional Neural Networks

e (eneral idea: sliding window, i.e. slide a matrix (kernel or filter) across input image to check
for a specific object (activations will be high).
o Reduction in trainable parameters through parameter sharing,.
o Location invariance through the use of the sliding window.

e Hand-engineered features are difficult to define.

e We can learn filters instead: create multiple transformed representations of the image and use
those as input features to a next layer.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

30

Convolutional Neural Networks

e [Each layer becomes more and more expressive.

1 Aug 2022 - 5 Aug 2022

blockl_conv2

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

31

Convolution Operation

e Output is a dot product between a filter and portion of the input image.

e Hyperparameters: Kernel size, Stride, Padding.

1 {1 1]0]O0 Il l=0i(f=1y 0 | O

O 1| 1]1}]0 1101 0x0|1x1({1x0| 1 | O

O|0 |1]1/[1 O] 11]0 0x1|0x0[1x1| 1 1

OjO0 |1]1}]O0 1101 0l0 |1 110

0| 1 110710 0 | 1 1 0l o
Input Filter / Kernel

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Pooling Operation

e Pooling operation down-samples feature maps.

e Two types of operations: averaging (torch.nn.AvgPool2d) Or max torch.nn.MaxPool2d
13| 23
c,o\"\’“Q 7 L) ’ <
S| | g || M -
5 3 1 23
7 1 2 3
abl 17 1 4
% 6 |13
‘ag [Ng /;
e [owers computational load of training and inference.
e Avoids overfitting.
e Hyperparameters to chose: type, kernel size and stride.

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

Data Augmentation

e This is not data preprocessing such as image resizing or normalization.

e The performance of CNNs improves with more data.
If we can’t collect more data, we can artificially create new variants of existing training data
with augmentations.

e Augmentations include a operations such as rotations, shifts, flips, zooms, contrast or hue
adjustments.
You should always consider domain-specific techniques.

® In PyTorch use torchvision.transforms.Compose, €.g.:

transform=transforms.Compose([Original image
transforms.RandomCrop(32, padding=4), ¢
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((©.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),

),

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

34

Transfer Learning

e In practice you won’t train a big CNN from random initialization when you have insufficient
data points.

e Transfer learning: apply the knowledge that one model holds to a new task.
o Download a model that has been trained on, for instance, Imagenet (real-world images).
o Add new layers or adjust existing ones to the shape of your input and output.
o Train only first and last layer on your data, or more (fine-tuning).

e In PyTorch you can freeze or freeze layers using:

param.requires grad = False

e Adjust your learning rate!

1 Aug 2022 - 5 Aug 2022 Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)

