
Machine Learning:
Introduction to Deep Learning, Convolutional Neural Networks

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Schedule for This Part

● Introduction to Machine Learning, Decision Trees
● Introduction to Deep Learning, Convolutional Neural Networks:

○ Artificial (Deep) Neural Networks
○ Convolutional Neural Networks

● Unsupervised Machine Learning, Autoencoders
● Introduction to Graph Neural Networks

2

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Frameworks

● We will work with PyTorch.
● Alternatively TensorFlow and Keras are a popular choice.

3

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Brief History of Artificial Neural Networks

● 1943: McCulloch & Pitts: simple neural networks with electrical circuits

● 1958: Rosenblatt: works on perceptron

● 1959: Widrow & Hoff: first neural network applied to real world problem (ADALINE)

● 1969: Minsky & Papert: proved limitations of perceptron

● 1986: Rumelhart, Hinton & Wiliams: backpropagation for multi-layer perceptron

● 2012: Krizhevsky: CNN (AlexNet) wins image recognition competition

4

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Artificial Neural Networks

● You’ve just learned about BDTs.
What about highly non-linear data?

Big datasets?
Data with many input features (like images)?

● We can transform the input space but we often don't know how a priori

5

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous
function arbitrary well, given enough hidden units
Hornik 1991

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Artificial Neural Networks

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous
function arbitrary well, given enough hidden units
Hornik 1991

6

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Artificial Neural Networks

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous
function arbitrary well, given enough hidden units
Hornik 1991

7

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Artificial Neural Networks

Universal Approximation Theorem
A single hidden layer neural network with a linear output unit can approximate any continuous
function arbitrary well, given enough hidden units
Hornik 1991

8

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Artificial Neural Networks

● Neural networks are inspired by biological neurons.
𝑥: neuron (node) input;
𝑤: neuron weight;
𝑏: bias;
𝑓: activation function

Credit

9

https://towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Artificial Neural Networks

● Neural networks are inspired by biological neurons.
● Affine transformation of the input data.
● Followed by (non-linear) activation, e.g. sigmoid function

● Nodes are combined into layers.

10

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

From Neuron to Network

● A shallow neural network, given wide enough hidden layer should approximate well a given
function 𝑓. In practice this is quite difficult…

● Stacking more layers instead improves performance. Why?
● Space folding:

Source

11

https://proceedings.neurips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

More Activation Functions

● Sigmoid. Expensive, saturates for low and high output.

● ReLU. Non-negative, cheap but dies for x < 0.

● Leaky ReLU. Non-zero for negative values.

● Softmax, . Produces probability over classes, i.e. use it for classification.

Visualizations from Wikipedia

12

https://en.wikipedia.org/wiki/Activation_function

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Question Interlude

● How many hidden layers does this network have?

13

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Inference (Feed-forward Pass)

14

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Training Neural Network

● For the pair of input xi and corresponding label yi. We want to minimize the loss function E.
● Loss function quantifies how well the model is achieving the learning objective, e.g. mean

squared error or cross-entropy loss .
● Model parameters θ: weights and biases.
● X is described by a vector of variables, aka features.

15

Solution:

● Inefficient: Random search of θ, for which we minimize E.
● Much better: Neural networks layers are differentiable, we can use gradient descent.
● Another alternative: hebbian learning.

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Gradient Descent

● We normally minimize things by evaluating the derivatives (direction towards minimum).

● Gradient descent computes the gradient of the cost function w.r.t. to the current
parameters θ for the entire training dataset.

● At each training step k update model parameters to move towards steepest decline:

θk+1 ← θk − η ⋅ ∇ J(θk), where J(θk) is the cost and η is the step size and k is the time

● Adjustment step is determined by learning rate η (hyperparameter).

16

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Chain Rule

● Computing derivatives of a base function: decompose composite function into a set of base
ones and differentiate them one by one.

17

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Backpropagation

Backward propagation of errors

● Simple: inputs forward, errors go backward.

● Make forward pass through the network to calculate the output and the corresponding loss.

● Do a backward pass go back through the network to calculate gradients for all weights.

● Updates to parameters are propagated from the output of the network using the chain rule.

● Update parameters with their gradients and repeat until convergence.

● Use dynamic programming: collect derivatives at each step without recalculating them.

● One epoch is a forward and backward pass over the full-dataset.

18

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Practise: Choices of the Learning Rate

● Choice of the learning rate is critical for the successful training.

Credit

● There is no fixed rule: depends on the dataset, network.

19

https://www.bdhammel.com/learning-rates/

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Gradient Descent Variants

● (mini-batch) Stochastic Gradient Descent (SGD): use random minibatch of examples.
● Adagrad: adjusts the learning rate to individual features.
● Momentum: add a fraction of previous gradient to update vector.
● RMSprop: use a moving average of squared past gradients.
● Adam: RMSProp with momentum and bias correction.

Just use Adam.

Credit

20

https://web.stanford.edu/~jduchi/projects/DuchiHaSi10.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1412.6980
https://twitter.com/alecrad

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Hyperparameters

● Single change in optimization procedure, network architecture or data pre-processing can
make or break your model.

● Rules are loose, it is more like art to adjust the hyperparameters.
● What:

○ number of epochs,
○ batch size, learning rate,
○ initialization,
○ choice of activation layers, network depth/width (architecture)
○ and many more…

● How:
○ manual (experience and/or luck),
○ grid searches (random),
○ surrogate models (bayesian optimization, reinforcement learning),
○ specialized software: Ray / AutoKeras.

21

https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial.html
https://autokeras.com/

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Question Interlude

● Can you describe this situation?

22

Train
Validation

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Overfitting

Underfitting (low variance, high bias) with poor train and test results.

● Model is too simple or it can’t capture underlying data structure.
● Solution is to increase model capacity or train longer.

Overfitting (high variance, low bias) with good training error but bad test results.

● Model captures noise instead of the input structure (low generalization).
● Model has too much capacity.
● Solution 1: terminate training before this happens, i.e. early stopping.
● Solution 2: limit capacity of the model by regularization, reduce generalization error but not

the training error.
○ Lasso or ridge regularization.
○ Dropout.
○ Data augmentations, transformations of input, e.g. rotations. etc.

23

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Early Stopping

Early stopping is beautiful free lunch Source

● When to stop training? After predefined number of steps? Can be too late or too early.
● Early stopping: stop your training (with some patience) if your validation error does not

improve enough.

24

Train
Validation

http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

L1/ L2 Regularization

● Limit the capacity of the model by penaling the value of weights.
● L1 regularization (Tikhonov): absolute value of weights for sparsity (feature selection):
● L2 regularization (LASSO): penalize square of weights:
● λ is a hyperparameter.
● In Pytorch L2 regularization is called weight decay.

25

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Dropout (Paper)

● Adding noise to hidden layers makes networks more robust to initialization, and results in
better generalization.

● Dropout is a simple way to execute that by randomly set some neuron weights to zero with
probability p.

● Another interpretation: at each step train a new subnetwork to break co-adaptation of nodes

26

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Batch Normalization (Paper)

● When training, parameters update in different scale, and the initial normalization is lost.
● When the input distribution to a learning system changes, it is said to experience covariate shift.
● Training procedure is sensitive to the scale of gradients:

○ Vanishing gradients: gradients getting smaller and smaller as the backpropagation
progresses: no updates.

○ Exploding gradients: gradients getting larger and larger as the backpropagation
progresses, very large updates.

● Add an operation just before or after the activation function of each hidden layer.
● The layer lets the model learn the optimal scale and mean of each of the layer’s inputs using

running mean and standard deviation of the input over the current mini-batch.

● Less sensitivity to initialization parameters.

27

https://arxiv.org/pdf/1502.03167.pdf

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Weight Initialization
● Another way to address vanishing and exploding gradients is through weight initialization.

● We initialize the weights randomly, sampling from a normal distribution, μ=0 and σ=1.

● This results in a wide range.

● We can ensure that the weights are closer to 0, which works better.

● Xavier initialization normal distribution with μ=0 and σ2=n-1, where n is the number of
inputs, use it for non-ReLU blocks.

● He initialization: μ=0 and σ2=2n-1, use for blocks with ReLU.

28

http://proceedings.mlr.press/v15/glorot11a.html
https://arxiv.org/abs/1502.01852

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Computer Vision

A huge subfield of deep learning dealing with image classification, object detection, segmentation
or tracking, depth estimation, 3d reconstruction etc.

Challenges:

● Large dimensionality of the input, e.g. HD image has close to 1M pixels.
● Results must be invariant to shifts, rotation, different light conditions etc.
● Images can contain several objects from multiple categories or multiple instances from one.

29

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Convolutional Neural Networks

● General idea: sliding window, i.e. slide a matrix (kernel or filter) across input image to check
for a specific object (activations will be high).

○ Reduction in trainable parameters through parameter sharing.
○ Location invariance through the use of the sliding window.

● Hand-engineered features are difficult to define.

● We can learn filters instead: create multiple transformed representations of the image and use
those as input features to a next layer.

30

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Convolutional Neural Networks

● Each layer becomes more and more expressive.

31

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Convolution Operation

● Output is a dot product between a filter and portion of the input image.

● Hyperparameters: Kernel size, Stride, Padding.

32

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Pooling Operation

● Pooling operation down-samples feature maps.
● Two types of operations: averaging (torch.nn.AvgPool2d) or max torch.nn.MaxPool2d

● Lowers computational load of training and inference.
● Avoids overfitting.
● Hyperparameters to chose: type, kernel size and stride.

33

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Data Augmentation

● This is not data preprocessing such as image resizing or normalization.
● The performance of CNNs improves with more data.
● If we can’t collect more data, we can artificially create new variants of existing training data

with augmentations.
● Augmentations include a operations such as rotations, shifts, flips, zooms, contrast or hue

adjustments.
● You should always consider domain-specific techniques.
● In PyTorch use torchvision.transforms.Compose, e.g.:

34

Fourth Computational and Data Science school for HEP (CoDaS-HEP 2022)1 Aug 2022 - 5 Aug 2022

Transfer Learning

● In practice you won’t train a big CNN from random initialization when you have insufficient
data points.

● Transfer learning: apply the knowledge that one model holds to a new task.
○ Download a model that has been trained on, for instance, Imagenet (real-world images).
○ Add new layers or adjust existing ones to the shape of your input and output.
○ Train only first and last layer on your data, or more (fine-tuning).

● In PyTorch you can freeze or freeze layers using:

param.requires_grad = False

● Adjust your learning rate!

35

