
Parallelizing CMS Track
Finding on GPUs
TRES REID, PETER WITTICH, GAVIN NIENDORF [CORNELL]

PHIL IP CHANG, BALAJ I VENKAT SATHIA NARAYANAN, SLAVA KRUTELYOV, AVI YAGIL ,
YANXI GU, EMMANOUIL VOURLIOTIS [UCSD] , BEI WANG [PRINCETON]

8/4/2022 SEGMENT LINKING 1

Overview
This is not meant to be a CUDA/GPU talk!

◦ This is a talk on a real application of CUDA

◦ There was no dedicated talk on CUDA/GPUs so feel free to interrupt and ask questions if I say anything
too technical

Describe the tracking problem

Explain the proposed algorithm

Discuss the implementation on GPUs
◦ Give a tour of what we did and some lessons we learned

Present the current results
◦ Computation and physics performance

8/4/2022 SEGMENT LINKING 2

The Large Hadron Collider

8/4/2022 SEGMENT LINKING 3

The CMS Detector

8/4/2022 SEGMENT LINKING 4

Tracking

8/4/2022 SEGMENT LINKING 5

Increased Pileup from 40 to 200

8/4/2022 SEGMENT LINKING 6

Tracking at HL-LHC is a challenge
◦ Track finding is the most time-consuming component of event reconstruction

◦ HL-LHC era luminosity levels will cause the average pileup per event to increase
from an average of 40 to 140 (to 200).

◦ Track finding is a combinatorics problem.

◦ More collisions-> more hits-> more ways to connect hits -> time and
computational expense of track finding grows non-linearly.

https://espace.cern.ch/HiLumi/WP2/Wiki/HL-LHC%20Parameters.aspx

*Timeline is out of date

Increased Pileup from 40 to 200

8/4/2022 SEGMENT LINKING 7

Tracking at HL-LHC is a challenge
◦ Track finding is the most time-consuming component of event reconstruction

◦ HL-LHC era luminosity levels will cause the average pileup per event to increase
from an average of 40 to 140 (to 200).

◦ Track finding is a combinatorics problem.

◦ More collisions-> more hits-> more ways to connect hits -> time and
computational expense of track finding grows non-linearly.

As Steve said in his talk, Moore's law is dead and single
core CPUs are not getting much better (vectorization
aside)

Improvements are coming from multi-core processors

CPU price per performance is getting more expensive
◦ Can’t throw more CPUs at the problem

We need to rework the algorithm to parallelize
computations and/or offload work to accelerators
(GPUs, FPGAs, etc.)

Aren’t CPUs Getting Better?

8/4/2022 SEGMENT LINKING 8

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://indico.cern.ch/event/1055520/timetable/?view=default#20211011

Segment Linking
Algorithm
EXPLOITING THE NEW PHASE-2 GEOMETRY TO PARALLELIZE TRACK
FINDING

8/4/2022 SEGMENT LINKING 9

Mini-Doublets (MD)

8/4/2022 SEGMENT LINKING 10

Object building summary
◦ Make MD from hits

Line Segments (LS)

8/4/2022 SEGMENT LINKING 11

Object building summary
◦ Make MD from hits

◦ Make LS from MD

Triplets(T3) and
Quintuplets (T5)

8/4/2022 SEGMENT LINKING 12

Object building summary
◦ Make MD from hits

◦ Make LS from MD

◦ Make T3 from LS

◦ Make T5 from T3
◦ Clean T5

Pixel Triplets (pT3)
and Pixel Quintuplets (pT5)

8/4/2022 SEGMENT LINKING 13

Object building summary
◦ Make MD from hits

◦ Make LS from MD

◦ Make T3 from LS

◦ Make T5 from T3
◦ Clean T5

◦ Make pT5 from pLS+ T5
◦ Clean pT5

◦ Add pT5 to TC

◦ Mark used T5, T3, pLS

◦ Make pT3 from unused pLS+ T3
◦ Clean pT3

◦ Add pT3 to TC

Track Candidates (TC) and Extensions (TCE)

Track Candidates
◦ Order: pT5 > pT3 > T5 > pLS(4)
◦ Each step of adding objects to the TC collection has

a cross duplicate cleaning stage applied
◦ Hit matching criteria and dR criteria

After all track candidates are added, a track
candidate extension step is applied

◦ Extended by an additional layer by matching
produced TCs with an additional unused T3.

8/4/2022 SEGMENT LINKING 14

Object building summary
◦ Make MD from hits
◦ Make LS from MD
◦ Make T3 from LS
◦ Make T5 from T3

◦ Clean T5

◦ Make pT5 from pLS+ T5
◦ Clean pT5

◦ Add pT5 to TC

◦ Mark used T5, T3, pLS

◦ Make pT3 from unused pLS+ T3
◦ Clean pT3

◦ Add pT3 to TC

◦ Clean T5 again and add to TC
◦ Add unused pLS (4 hits only) to TC
◦ Extend TCs

GPU Implementation
GPU: NVIDIA TESLA V100- 32GB

8/4/2022 SEGMENT LINKING 15

Why GPUs
CPU

64 cores

Low latency

Good for serial processing
◦ ~2TFlops (Intel Xeon)

Familiar programming languages

GPU

100-1000s for cores

High throughput

Good for parallel processing
◦ 15 TFlops (Tesla V100)

High latency (Device-host transfers)

Frees CPU for other tasks

Requires additional programming languages
for GPU tasks (CUDA)

8/4/2022 SEGMENT LINKING 16

GPUs are useful when data transfers can be hidden, when high throughput is necessary,
and when calculations are independent of each other and can be done in parallel.

Advantages of Using a GPU for this Algorithm
Data is preloaded

◦ Expect hit unpacking to be done on GPUs already

◦ Pixel tracking would also be done on GPUs by Patatrack

◦ Little to no additional transfer cost to the GPU (usually the main drawback of GPUs)

Each step in then algorithm has its own kernel launch linking two objects together
◦ 100-1000s of objects at any given stage:

◦ 1-100 thousand possible combinations (even with regional restrictions).

◦ Reduce redundancy by
◦ Utilizing premade module maps and eta-phi regions

◦ Skipping components already marked as duplicates or used in early
stages of the algorithm

◦ Building tracks in an outward direction only

◦ Each pair is independent of all other pairs

This is a throughput intensive task!

8/4/2022 SEGMENT LINKING 17

Work seems suitable for the GPU but how
do we actually do this?

How do we actually do this on GPUs?

Each object has several stages
◦ 1) Allocate memory for that object

◦ 2) Launch CUDA kernels to create the objects
◦ Split kernels into several dimensions

◦ 1 dimension iterates over the modules where the object may start

◦ Other dimensions iterator over possible object pairs associated with that module that could
be linked together

◦ Selections of cuts are applied to the pairs to see if they truly belong to the same track

◦ Passing all cuts, the object is saved to memory

◦ 3) Duplicate cleaning
◦ T5, pT5, and pT3 only

◦ Another CUDA Kernel checks for duplicates within the same object collection.

8/4/2022 SEGMENT LINKING 18

Kernel Launching: Original Method

Most naïve approach
◦ Launch threads for every pair of objects

◦ Use maximum number of objects per module along with the number of modules to launch the all the
threads

◦ Ex) For MDs, there are nModules * N_Max_MD_Per_Module^2 threads launched

◦ The actual number of objects per module is usually orders of
magnitude smaller than the pre-defined maximal number.

◦ For MD, the predefined max was 600!

◦ Many modules do not even have objects associated with it

◦ A lot of idle threads and wasted resources

Lesson: Launching threads that do no work has
an overhead cost that adds up.

8/4/2022 SEGMENT LINKING 19

nThreads = (nModules, N_Max_object1_per_Module, N_Max_object2_per_Module)

Kernel Launching: Dynamic Parallelism
Idea: First figure out which modules are not empty and then launch
kernels only for those

Nested Kernels
◦ The top level kernel returns for any immediately empty modules

◦ Reducing the number of threads needed.

◦ For threads passing the top level, new kernels are launched to run the algorithm for the
maximum number of objects per module

◦ Issues:
◦ Dynamic parallelism is difficult to debug and profile as the CUDA tools are not sufficiently

equipped to handle it.

◦ Dynamic parallelism is not currently usable in CMSSW due to CMSSW’s thread scheduler.

◦ Still wasting resources

8/4/2022 SEGMENT LINKING 20

Kernel Launching: Pre-processing
New Idea: Figure out the maximum number of pairs that are actually linkable at runtime

Loop through the objects within each module on the CPU first and figure out how many objects
at most are actually linkable for each object

The calculated maximum number of objects per module is way lower than the maximum
possible number of objects per module

Lesson: know your data! Having code tailored
to your data can reduce wasted resources.

8/4/2022 SEGMENT LINKING 21

Kernel Launching: Current
Current kernel launching modifies the preprocessing concept. Using for loops for each thread
dimension

Top most loop typically runs over all the lower modules and does the “pre-processing” step,
figuring out how many object pairs are possible for this model specifically.

The inner most loop(s) iterate over the inner and outer objects that are pairable.

Any empty modules are skipped over. fewer threads are wasted. Any thread that fails a step in
the algorithm is immediately returned, freeing more resources.

8/4/2022 SEGMENT LINKING 22

Profiling: Scheduler Statistics

High number of active warps but low number of eligible warps

Warps are not being issued new instructions often -> Stalling

Idle warps-> lowers performance and wastes resources

8/4/2022 SEGMENT LINKING 23

Profiling: Warp State Statistics

2 major sources of slow down
◦Long score board: waiting for memory to load

◦LG throttle: too many memory fetching instructions

8/4/2022 SEGMENT LINKING 24

LG Throttle
LG Throttle:
◦ Warp stalled waiting for the L1 instruction queue for local and global memory

operations to not be full.
◦ Occurs when executing local or global memory instructions extremely frequently
◦ Our code requires getting the hits for each object.

◦ Higher order objects iterate through the lower order objects to get hits
◦ Ie) to get the hits for a pT5, one would use nested array indexing

◦ pT5 hits = Hit_Index[MD_index[LS_index[T3_index[T5_index[pT5_index[i]]]]]]
◦ Each step adds another instruction to the queue, which quickly fills up causing stalls

◦ Instead, at the cost of more memory, this hits for the object is saved explicitly for each object
◦ pT5 hits = pT5_hits[i]

Lesson: Frequent memory fetching instructions can be
detrimental, don’t nest operations to get the data you
need.

8/4/2022 SEGMENT LINKING 25

GPU Resource Utilization: Register Spilling
GPU resources: Nvidia Tesla V100 (32 GB)

◦ 80 streaming Multiprocessors (SM)

◦ 65536 registers per SM

◦ 1024 threads per block maximum

◦ Fully utilized GPU: 80 blocks, with 1024 threads per block -> 64 active registers per thread
◦ Limit register usage using compiler flag: –maxregcount 64

Many kernels need over twice this number of live registers per thread
◦ Register spilling: values in registers are stored in L2 cache. Derogates performance since

fetching from L2 cache memory is slow.

Lesson: Check live register usage to see if spilling may occur.
Register spilling greatly reduces performance.

8/4/2022 SEGMENT LINKING 26

Reducing Registers
In-lining functions
◦ In-lined functions do not need registers to pass arguments

◦ Functions need to be within the same file as the kernel
◦ Could use Link time optimization, but this is very new to CUDA and we couldn’t get this to work

Re-ordering code so values do not have to be saved for long periods
of time.
◦ Initialize values and immediately use them

8/4/2022 SEGMENT LINKING 27

GPU Resource Utilization
Do we need 1024 threads per block?
◦ Most modules do not have 1024 possible connections.
◦ Launching this many threads per block is unnecessary- > many idle threads.

Current kernel implementation allows threads to be overworked, so fewer
can be launched per block.
◦ Number of threads corresponds to typical number of object pairs
◦ Events with larger number of pairs still accounted for
◦ Fewer idle threads
◦ Don’t need to limit registers per thread-> fewer register spills

Lesson: A fully utilized GPU is often recommended to offset memory
transfer costs, but remember you are optimizing for performance and not
GPU utilization outright. You can see speedups when reducing the number
of threads depending on your data.

8/4/2022 SEGMENT LINKING 28

Memory Usage

Memory allocated for structures of arrays
◦ CPU parallelization often uses array of structures

Memory allocation format
◦ Space = Data type * number of objects * repeated value(for

multiple variables)

◦ Pointer sharing reduces the number of allocations that need to be
done
◦ Pointer2 = pointer1 + offset when pointer1 is allocated with twice as much space as

needed.

◦ Reduces time spent allocating memory

8/4/2022 SEGMENT LINKING 29

Memory Management: Allocation Methods

Unified vs explicit memory allocations
◦ Unified is useful because you don’t have to handle memory

transfers

◦ Easy to setup for testing or getting started

◦ Unified memory also has a lot of overhead associated with it

◦ Explicit memory allocations and transfers gave us over a 2x
speedup

8/4/2022 SEGMENT LINKING 30

Lesson: Use explicit memory for the best performance, but
unified memory for quickly setting up code and debugging

Memory Management: Allocation Methods
Caching allocator:
◦ Allocating and freeing memory is expensive

◦ Instead, reserve the space for the next event and just reset it

◦ The first event (or events requiring an increase in space) takes a lot longer to
setup but successive events are faster

◦ Caching allocators uses memory bins by factors for two:
[128MB,256MB,512MB,1024MB,etc]
◦ If 138 MB is required, 256 MB is allocated and kept for successive runs.

◦ This is CMSSW specific but I think there are similar cuda tools (CUB? Rapids?)

8/4/2022 SEGMENT LINKING 31

Lesson: Use memory caching to reserve space between runs to
avoid repeating expensive allocations and free

Multi-Streaming

Individual steps in the algorithm must run serially
◦ Kernel must finish before next one can start

◦ A free SM is waiting for work-> unused GPU resource

Multistreaming: processes events in parallel
◦ Cannot run entire kernels in parallel

◦ Not enough registers to do this (each SM is already maxed out by any kernel)

◦ Can pipeline kernels from other events on another stream
◦ Free SMs can switch streams and start working there (see backup)

◦ Throughput improves

8/4/2022 SEGMENT LINKING 32

Computational Performance
Single stream

8 steams

8/4/2022 SEGMENT LINKING 33

Target time = ~32 ms per event [expected cpu time for 64 cores]

Lesson: multiple streams can keep the GPU busy and overlap GPU
work with cpu processes and data transfers, maximizing performance

Physics Performance: Efficiency

8/4/2022 SEGMENT LINKING 34

Sim matched: 75% of reconstructed track’s hits
associated with the same sim track

Physics Performance: Efficiency

8/4/2022 SEGMENT LINKING 35

Our Algorithm
CMS Algorithm

Physics Performance: Fake Rate

8/4/2022 SEGMENT LINKING 36

Fake Rate: Reconstructed tracks not associated
with a sim track over all the reconstructed tracks

Physics Performance: Fake Rate

8/4/2022 SEGMENT LINKING 37

Our Algorithm
CMS Algorithm

Summary

Performance
◦ Physics validation

◦ 90% efficiency (same as current algorithm)

◦ 20% fake rate in the barrel (transition)
region

◦ Can be improved using patatrack pixels
and reduced with final fit

◦ 1-2% duplicate rate

◦ Timing: 24 ms per event
◦ Tested with 200 events from Ttbar PU200

sample over 8 streams on a Tesla V100

◦ Order magnitude reductions from 1 year
ago

◦ Compare to expected target 32 ms/ per
event for 64 core CPU CKF

◦ Memory: 1-1.5 GB per event

Lessons to keep in mind
◦ Know your data!

◦ More threads doesn’t necessarily
mean better performance

◦ GPU resources

◦ Avoid register spilling

◦ Inline functions

◦ Use explicit memory allocations
and data transfers

◦ Use memory caching to avoid
reallocations

◦ Use multiple streams to keep the
GPU busy

8/4/2022 SEGMENT LINKING 38

Backup

8/4/2022 SEGMENT LINKING 39

Kernels

Almost always launch 80 blocks with 1024 threads per block
◦ Dimensions of the block are split in a way that is roughly tuned for each kernel

◦ Each thread dimension iterates through possible inner-outer pair of objects
◦ Ie) for pT5 creation: threadId.x might correspond to T5 and threadIdx.y to a pLS

◦ Each thread calculates angles and chi square values from linear and circular fits
◦ Calculated quantiles that fail required criteria are not saved

◦ Each pair is independent of any other pair
◦ No attempt to avoid reusing hits or objects already found by this kernel

◦ Duplicate removal kernels remove redundant tracks

8/4/2022 SEGMENT LINKING 40

Large number of combinations and independence of any two pairs
This is a highly parallelizable algorithm that is suitable for the GPU.
GPU: Nvidia Tesla V100-32GB

GPU Resources and Limitations
Memory

◦ Objects stored as struct of arrays
◦ Size based on number of objects (99.99% of maximum)

◦ Uses 1.2-1.5 GB per event
◦ Order of magnitude reduction from 6 months ago

◦ GPU has 16- 32 GB of memory: can run multiple streams without issues

Registers
◦ Almost always launch 80 blocks with 1024 threads per block
◦ 80 streaming multiprocessors (SM) -> 1 block per SM
◦ 65536 threads per SM(block) / 1024 threads per block-> limit 64 active registers per

thread
◦ --maxregcount 64 flag
◦ Most Kernels use more than 128 live registers per thread

◦ -> register spilling: the largest source of derogated performance due to stalling from constant L2 cache
memory fetching.

8/4/2022 SEGMENT LINKING 41

GPU: Nvidia Tesla V100-32GB

Big Data

8/4/2022 SEGMENT LINKING 42

Increased Pileup from 40 to 200

8/4/2022 SEGMENT LINKING 43

Tracking at HL-LHC is a challenge
◦ Track finding is the most time-consuming component of event reconstruction

◦ HL-LHC era luminosity levels will cause the average pileup per event to increase
from an average of 40 to 140 (to 200).

◦ Track finding is a combinatorics problem.

◦ More collisions-> more hits-> more ways to connect hits -> time and
computational expense of track finding grows non-linearly.

Tracking Challenges at the HL-LHC
Tracking at HL-LHC is a challenge

◦ Track finding is the most time-consuming component of event reconstruction

◦ HL-LHC era luminosity levels will cause the average pileup per event to increase from an average of 40 to 140 (to 200).

◦ Track finding is a combinatorics problem.

◦ More collisions-> more hits-> more ways to connect hits -> time and computational expense of track finding grows non-
linearly.

8/4/2022 SEGMENT LINKING 44https://cds.cern.ch/record/1966040

https://espace.cern.ch/HiLumi/WP2/Wiki/HL-LHC%20Parameters.aspx

*Timeline is out of date

Memory Management: Space Utilization
Objects are stored as structs of arrays

◦ Our code could use as much as 12 GB per event

◦ Reduced memory by
◦ Changing the bin size used by the caching allocation.

◦ Bin steps from factor of 8 to 2

◦ Any given array now uses at most 2x more than needed, greatly reduces memory requirements for the caching allocator

Number of maximum object to be saved needs to be known before allocation
◦ Set a “max number of objects” constant used to allocate space

◦ Value originally set using the a safe number above the maximum number of objects seen in a
distribution of 500 events

◦ This distribution has a very long tail, most events don’t need that much space

◦ Reduce the number of objects saved keep 99.99% of the objects, cutting out the long tail while hardly
changing the overall efficiency.

8/4/2022 SEGMENT LINKING 45

Memory Management: Half Precision
Store (u)ints using u(int)_16,8 etc whenever possible

Save floats as half precision floats in storage
◦ Reduces memory usage by a factor of 2

◦ Currently convert back to FP32 when used in the kernel

Current memory usage: < 1 GB per event

Lesson: use smaller data types to store data.

8/4/2022 SEGMENT LINKING 46

Half Precision Calculations
Future plan: Use half precision calculations when possible.

◦ Test toy code can see a 2x timing improvement using half precision (reduces # threads by 2)

◦ Difficulty is getting memory coalesced to do half precision calculations

8/4/2022 SEGMENT LINKING 47

Moore’s Law: number of transistors doubles every 2 years

Single threaded CPU performance has plateaued
◦ Transistors get smaller but their power consumption hits a wall

◦ Power wall +cooling limitations -> clock speeds plateau (~2-4 GHz)

◦ Less improvement for single threaded performance

CPU price per performance
◦ Improvements have fallen off while computational

requirements have only increased

Solution: Parallelize computations and/or
offload work

Aren’t CPUs Getting Better?

8/4/2022 SEGMENT LINKING 48

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://indico.cern.ch/event/1055520/timetable/?view=default#20211011

Kernel Launching: Original Method

Most naïve approach
◦ Launch threads for every pair of objects

◦ Use maximum number of objects per module along with the
number of modules to launch the all the threads

◦ There are nLowerModules * N_Max_object_Per_Module^2 threads
launched
◦ The actual number of objects per module is orders of magnitude smaller than the

pre-defined maximal number. (for MD, the predefined max was 600)

◦ Many modules do not even have objects associated with it

◦ A lot of idle threads and wasted resources

Lesson: Launching threads that do no work has an
overhead cost that adds up.

8/4/2022 SEGMENT LINKING 49

*I know this is for MD and
not hits but the idea is the
exact same

