Tracking at FCC experiments

e FCC-ee conceptual design proposals
« Technology R&D for precision, further challenges at FCC-hh

FCC meeting at IRFU, April 20/2022
D. Contardo, IP2]



FCC-ee conceptual designs today

CLD
B-field ability for3—-4T
3D High Gran. PFlow (jets)
Med. track IP & p; precision
Med.(-) y-energy precision
Low p PID

IDEA
B-field limited by X/X,
2D Medium Gran. PFlow
High track IP & p; precision
Med.(+) y-energy precision
High p PID

LArDet
B-field limited by X/X,
3D Medium Gran. PFlow
High track IP & p; precision
Med.(+) y-energy precision
High p PID

IDEA+ (SCEPCal)
B-field ability for > 2T ?

2D Medium Gran. PFlow

High track IP & p; precision
High y-energy precision
High p PID
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e PID RICH before HGCAL instead of DT instead of DT instead of DT
instead of SCEPCal

instead of DRHCAL

Options & Variants * Tracking systems can be exchanged in different conceptual designs above

== \/ertex Detector: MAPS
mm=  \Nrap-up/Timing Layer: MAPS/Hybrids/AC-LGADs/SPADs/MicroMegas/u-Rwell...



CLD and IDEA Vertex Detectors designs (superimposed)

MAPS with o,, = 3 um and X/X, = 0.3% / layer of Si

*  CLD concept: double layers in Barrel/Endcap configuration
 |IDEA concept: single closer layers in Long Barrel configuration
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CLD and IDEA Vertex Detector, d, and z, precision

* Initial performance target is achieved with relatively close precision despite design differences

* At first glance IDEA wins for precision at low p;(at small n) with less layers of Silicon
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F. Bedeschi https://indico.cern.ch/event/838435/contributions/3658345/attachments/1968063/3273039/Bedeschi IDEA.pdf

* o(Ad,) = 5 @ 15 / psin3?@ ~2/5/20 um (100/10/1 GeV at 90°)


https://indico.cern.ch/event/838435/contributions/3658345/attachments/1968063/3273039/Bedeschi_IDEA.pdf

More

aggressive Vertex Detector designs ?

* ALICE ITS3 targets:

ex. CLD & IDEA like designs (superimposed)

« 12" wafers with bent geometry and low X/X,* (<10 sensors)

e 1Ist|ayer at 10-12 mm coupled to cooled beam pipe seems feasible
* Could enable new features, ex. finer pitch, precision timing ?

* Layer(s) within the beam pipe could be an option ?
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12” wafers - 20 um thick — 0.05% X/X, with gas flow cooling & cylindrical design



Vertex Detector readout architecture

91 GeV CLD studies 365 GeV
bunch spacing 17.5 ns bunch spacing 3.4 us
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Figure of merit is the power consumption in the pixel matrix and at periphery vs impact on X/X,

e Hit rates to simulate power consumption of architecture options
* Tracking efficiency & fake rates to set time integration window
* RO w/o trigger appears possible wrt rates, impact on power and X/X,to be checked?

* Possibly different specifications/features according to radius/beam conditions ?

* Windows down to BC clock, O(20) ns at Z-peak, can be achieved with fast shaping, but benefit is not demonstrated:
* ex. further BIB rejection in VD to approach beam line and/or improve multiple vertices ID ?
* ex.0.1ZPile-Up at Z-peak in 1 us window, should be identified by total energy and reconstructed through vertex precision ?



CLD and IDEA Central Tracker designs (superimposed)

Si-sensors 200 um thick, 50 pm x 1 mm, 5-7 um precision, 1- 2 % X/X, from inside to outside
IDEA Drift CHamber 120 hits, 100(1000) um r®( z) precision, 0.016(0.05) % X/X, barrel(endcap)
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* Initial performance target achieved (o(p;)/p;* < 2 x 10 GeV?)
* At first glance IDEA winning over full p;range (low X/X, in DCH more critical than better hit precision in Si)

* Also possibly optimization of wrapping layers around DCH

pt (GeV)




R&D Vertex Detector: MAPS for position precision at low X/X,

« CERN EP WP1.2 R&D in TJ 65nm stitched process on 12” wafers — targeting ALICE ITS3

e 1t Multi-Layer-Reticle end 2020, different designs and splits (process parameters)
e Evaluation so far so good, depleted design preferred for less charge sharing
higher/faster signal, not mandatory for NIEL O(10%2) neq/cm? (TID O(1) MRad)
« 2nd submission Engineering Run 1 May 2022, stitched process for yield
« 3"dsubmission Engineering Run 2 Oct. 2023, full ALICE sensor =~ 10 x 28 cm?2 ?

* Toward FCC-ee: smaller pitch ? higher rates O(50) MHz
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R&D Silicon Central Tracker

* MAPS option for position and precision at low X/X,

* Transverse precision achieved for VD, can be released depending on X/X, achievements
* Pixels can be grouped in longitudinal direction to minimize power consumption
* Low X/X,is the challenge

* Low cost hybrid CMOS is a plausible alternative
* Less favorable for low pitch and low X/X,?

* Mechanics and services, X/X,, mostly a system aspect*

* See additional information slide 23
** See ex. of ALCIE additional information slide 24



R&D for Central Tracker: Drift CHamber & TPC

e Drift Chambers*
* Build large size detector with ultra-light wires

e TPC*
* Control ion backflow distortion, ex. with pixel — double MM meshes designs, low gain. High P
* R&D studies driven by CEPC: H. Qi https://indico.fnal.gov/event/46746/contributions/210382/

* DCH and TPC: demonstrate PID performance with dE/dx and dN/dx
* Potential to improve r® hit precision in DC exploiting cluster counting not yet investigated ?

* See additional information slide 25
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https://indico.fnal.gov/event/46746/contributions/210382/

4D-tracking at FCC-ee

* Scale from sub-BC clock O(<20) ns down to intra-BC precision O(<10) ps*

Requires ToA and ToT implementation in the readout

4D-tracking means timing measurement in several (all) layers

* Motivation

PID with ToF, ex. 1 hit with 10 ps precision at 2 m provides 30 /K separation up to 5 GeV**
Enabling mass measurement of LLPs decaying in charged particles

Ultra-pure track reconstruction (would need measurement in VD) ?

Energy spread correction in head-head, middle-middle, tail-tail collisions, O(6) ps vertex precision

Demonstrate benefit for physics
Define where the measurements should be implemented and with which precision per hit
Define readout architecture & estimate power impact compatibility with low X/X, constraint

* Collision time spread in BC at Z-peak is O(40) ps
** See additional information slide 26, multiple scattering limit to be evaluated
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Timing precision, technology considerations

0= 0.sign @ Oclec = cIsign @ cSjitter 69 Otime-walk 69 Otpc @ O¢lock

* Sensors w/o amplification

i
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* Planar large electrodes, precision limited by S/N = prpude va

* Planar small electrodes, precision limited by spread hit-electrode distance i

* 3D limited by S/N (but no effect of Landau fluctuation on charge collection time) Ethreshm
* Sensors w/ low amplification " ime wyer Thres.

* LGADs limited by Landau fluctuation, but high S/N m .,

' time

* Sensors w/ avalanche amplification L

* SPADs minimal Landau fluctuation and high S/N (ultimate precision?) Signal (mV)
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* Differently depending on parameters, active thickness, pitch, electrode size, that compete -

in performance for different technologies Threshold
* No obvious path to reach O(<10) ps, (while maintaining sufficient rad. tol.) ?
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CERN EP seminar W. Riegler: https.//indico.cern.ch/event/1083146/ 12



https://indico.cern.ch/event/1083146/

R&D for < 100 ps (1)

* Hybrid designs could be an alternative to MAPS for Central Tracker

* Planar sensor

* CMS diode tests show < 70 ps for S/N > 10 (asymptote = 10 ps)
* NAG62 VD achieved = 115 ps
» Improvement with thicker sensors and/or lower noise electronics ?

* Hybrid 3D sensors

* TimeSpot TSMC 28 nm achieved = 20 ps at 150 um thickness and 50 um pitch
» Improvement with finer pitch and lower noise electronics ?

* LGADS

e ATLAS/CMS achieved = 30 ps at 50 um thickness 1.3 mm? pads
TI-LGAD to enable pixel pitch with thinner sensors ?

13



R&D for < 100 ps (2)

 MAPS large electrodes

» Improvement with thicker sensors and/or lower noise electronics ?

 MAPS small electrodes
* ex. FASTPIX TJ 180 nm, 20(10) um pitch, hexa. geo., adv. dop. prof., epi. < 30 um, achieved o, = 120(140) ps

* Ultra small pitch and ultra thin epi layer for ultimate hit, timing precision and low X/X,
* Issue can be radiation tolerance (although constraint is relatively low at FC-ee)
* Commercial application (ex. for automotive...) now at high speed and high rates

» MAPS also candidates for 4D-shower tracking
* HGCal with pads, UltraHGcal with pixels (possibly particle counting with charge from ToT)

* Y Degerli presentation, ** See ex. in additional information slide 27
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FCC-hh tracking requirements

* New territory of operation conditions
 30x10% cm?s?t-Collisions 30 GHz,1000 per BC - 30 ab! integrated, coverage upton =6

° TI"aCking requir‘ements FCC-hh tracker concept (= x5 scale of FCC-ee)
«  <0.4> ps & <130> pm between vertices s Flat layout
390m? of silicon 430m? of silicon
* Track rates 30 GHz/cm?(r = 2.5 cm) — -3.0 2.5 20 1.0 00 10 20 2.5 3.0
. . .. . = Forward. Central §
> 4D-tracking for pile-up mitigation and reco. power S ondE i ===y
e Granularity close to FC-ee 12005_ ;;“ is
* O(5) ps precision to recover HL-LHC like PU 1000~ — $
800F- s =
*  Fluence 108 neqg/cm? and TID 30 GRad at 2.5 cm 600E- :'l':::: AN 3L | a0
400F- e E LT 4.5
200F- i i e e 5.0
= ; | AT 2 re—r————— :65-5
» New paradigm needed for radiation tolerance 0=45000  -10000  -5000 0 5000 10000 150020[mm]-0

* No present technologies can survive below R <30 cm
e ex.current MAPS and LGADS are marginally at level of radiation tolerance for outermost layers

» New paradigm needed for rates and data transfer
» Deep technology node, 3D integration, photonics and/or wireless data transmission*



R&D for FCC-hh tracking

e Si-sensor NIEL tolerance
* Unknown beyond 10'7/cm? neq, models maybe too pessimistic, qualification itself is an issue

3D & thin planar may approach needs
Other WBG semiconductors Diamond*, GalnP, GaAs, GaN, SiC** to be evaluated

 ASICTID tolerance
» Not clear if finer technology nodes alone would provide substantial improvements

» New materials and 3D process could be a solution
e Graphene, Carbon-based metamaterials, nanotubes...

* ex. CVD-diamond semiconductor pixel sensors ex. ASICs

* New 3D design, laser graphitization for thin low p electrodes
* In depth field optimization readout structures
* Need scaling for production of large areas

charged p
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* Higher dielectric thick oxide (multiple) gates
* Carbon based beyond CMOS, nanotube, graphene

ex. FinFET technology



Outlook on potential French contributions (personal view)

* Conceptual design simulations

e CLD-like with technologies
* Needs to solve PID issue without spoiling the PFLow benefit (ex. 4D-tracking — - large radii)
e Difficult to reconcile with high EM energy resolution

 |DEA and IDEA+EM with , DCH or

* Best performance “on paper” so far based on DCH, Crystal Cal and DR Cal

MAPS R&D for MIP and EM-shower tracking
* TJ 65 nm with stitching best candidate today to provide fine pitch, at low power & X/X,

* Longer term, but could start now

e Ultimate precision position & timing with ultra-fine pitch and 3D teers — rad. tol. ?
» Access to technology difficult and expensive

* Possible contributions to intermediate projects: ITS3 (LS3), ALICE-3 & LHC-b (LS4)

Summary of french R&D areas in additional information slides 19 to 22 (may not be exhaustive)



Additional information



R&D topics in French community

* MAPS for Vertex Detector - O(12) sensors in 12" wafers times number of experiments

Track IP precision ALICE ITS3 in LS3 fulfil
TJ 65 nm in framework of WP1.2 CERN

current FCC-ee requirements

A

Timing O(100) ps expected with current
devices, compatibility with IP precision
& benefit undefined yet

* MAPS for Central Tracking — Medium production O(100) m?

Improve X/X, for p; precision
ALICE-3, LHCb UT & MT in LS4

Timing implementation may not affect
signigicanly X/X,, benefit undefined yet

* MAPS for Wrap-up/Timing Layer:

Wrap-up - p; precision w/ DC/TPC

Timing Layer to provide low p PID** can
be integrated in a Si-CT

* Today: CMOS hybrid same order of timing precision 100 ps as MAPS, 3D and LGADS 0O(30) ps
** 10 ps precision covers only p < 5 GeV, 1/Vn for n layers, also increased radius option; impact of MS to be estimated for ultimate requirements



R&D topics in French community

* MAPS for High Granularity Calorimetry - large production O(1000) m?

Improve sampling fraction

Digital calorimetry

4D within shower w/ timing <10 ps

 Summary MAPS (more phase space in CLD-like design, maybe limited to VD in other designs)

Current effort addressing mostly impact precision and low X/X,

First attempts at exploiting timing properties with current technologies O(100) ps
Strong justification to develop designs that could provide < 30 ps

System aspects (mechanics, cooling...) important for X/X,

* Intermediate project interests ex. ALICE ITS3, BELLE 2, ALICE 3, LHCB 2

* Should consider technology aspects but also detector target, Vertex/Central Tracking, HGCalorimetry
* Large consortium: CPPM, lJCLab, IPHC, IP2I, IRFU, LLR, LP2I, LPNHE, LPSC, Subatech

* MP Fastime ASIC < 10 ps precision, MP Lojic130 clock precision (IP21 + ...) in 130 nm TSMC

* Technology access complex for sensors (so far driven by CERN) no identified path towrd 3D integration
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R&D topics in French community

* Noble Liquid Calorimeter

Improve granularity for PFlow ability
High density feedthrough

Low noise electronics in cold

Improve EM-energy resolution w/ LKr

e High Granularity Calorimeter

ECAL section electronics and system
integration

ECAL section Si-sensors

HCAL section

e Scintillating — Cerenkov in DRCal and SCEPCal

Material

Electronics

* Summary Calorimeters (fully Conceptual Design correlated)

* HGC R&D still oriented toward ILC? possible synergy with MAPS R&D; Noble liquid fully dedicated to FCC

* No dedicated PEPR proposals for calorimetry, other that could be related to FCC R&D?



R&D topics in French community

e Drift Chamber

Light wires
Assembly technics

« TPC

Ability to operate at Z-peak
luminosity (ion-backflow)
Ability for dN/dx

* PID

Timing Layer

RICH

* Interest to follow-up these developments and connect them to FCC-ee

e General conclusion: maybe a good time to form dedicated FCC-ee MPs acknowledged by IN2P3 & IRFU
* Common with ILC existing progams where relevant
* Will need to consider implementation of DRD proposals under ECFA



UT upstream magnet 6 m?
MT at low r within SciFi 20 m?

R&D Silicon Central Tracker

LHCb post LS4: first large scale application 30 m?
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50 x 150 — 100 x 300 pitch
< 5x 10 neq/cm?

Alice 3 (LS4) — MAPS 20 um pitch - BC timing 25 ns - 103 neq/cm?

ALICE 3 overview

R (m)
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VD and Si Central Tracker: mechanical design and integration

ex. ALICE ITS3

digital part of readout could be outside acceptance Retractable concept to approach beam at 5 mm inside Beam Pipe

Wire

p bonding ALICE

7

stitching

40 ym dummy silicon
Curved Silicon ALPIDE sensor
sensors

From C. Gargiulo ECFA R&D TF8 Symposia

In ALICE ITS2 0.36 % X/X, /layer of which: 15% Sensors, 50% Printed Circuit, 20% Cooling Circuit, 15% Support Structures
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Central Tracker: Drift CHamber & TPC

IDEA Drift Chamber concept

tracking efficiency e = 1
for O > 14° (260 mrad)
97% solid angle

0.016 X, to barrel calorimeter
0.050 X, to end-cap calorimeter

service area

B (F.E.E. included)

0.20m ] active area
modsy, 957
r=2.00m
0.050 X, '
112 layers 9=14°
Front Plate 12-15 mm cell width
~ _— r=0.35m
inner wall 0.0008 X, :
z-axis

56,000 cells
340,000 wires

(0.0013+0.0007 X,/m)

wires gas

outer wall|0.012 X,
z=2.00m

CEPCTPC

Momentum resolution (B=3.5T)  §(Y/p, ~ 107*/GeV /c)

6point in ré
Opoint N 1Z

Inner radius

<100 pm
0.4-1.4 mm

329 mm

Outer radius

Drift length

TPC material budget

Pad pitch/no. padrows

2-hit resolution

1800 mm

2350 mm

~ 0.05X, incl. field cage
< 0.25Xj for readout endcap

~1mm X (4~10mm) /=~ 200

~ 2 mm

Efficiency >97% for TPC only (p, > 1GeV)
>99% all tracking (py > 1GeV)
Pixel TPC with  Triple or Resistive GEM+ Double meshes
double meshes double GEMs Micromegas Micromegas Micromegas
IHEP, KEK, Saclay IHEP usTC
Nikehf DESY
Pad size: Pad size: Pad size: Pad size: Pad size:
55um-150um 1mmX6mm 1mm X 6mm 1mmX6mm 1mm X 6mm
square (If resistive layer)
Advantage for Advantage for Advantage for Advantage for | Advantage for
TPC: TPC: TPC: TPC: TPC:
Low gain: 2000 Gain: 5000-6000 | Gain: 5000-6000 | Gain:5000- High gain: 10%4
IBF X Gain: -1 IBF X Gain: <10 | IBF X Gain: <10 | 6000 Gain: 5000-6000
IBF X Gain: <5 | IBF X Gain: 1-2
Electrons cluster | Electrons Electrons Electrons Electrons cluster
size for FEE: cluster size for | cluster size for | cluster size size for FEE:
About @200um FEE: FEE: for FEE: About @8mm
About @5mm About @8mm About @6mm
Integrated FEE in | FEE gain: FEE gain: FEE gain: FEE gain:
readout board 20mVIfC 20mV/fC 20mVIfC 20mVHC
Detector Gain: Detector Gain: Detector Gain: Detector Gain: | Detector Gain:
2000 5000-6000 5000-6000 5000-6000 5000-6000
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Particle ID, broad-brush coverage of technology options

# of .
e K/m dN/dx |
; \F
. f_._’____lzr::d | IDEA
7 ; i K/t dE/dx | e Drift Chamber
6 | o M
5
30 /K separation with 4
typical ToF* at 2m, Torch 3
& 2
1
0

10 100 P (GeV/c)

* Not considering multiple scattering effect
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Commercial imager technologies

Top chip 45nm process Image Top View
1.4ym NENEEEEEEDE [y
G 7m
| - Bl-Pixels
; =] J | -
Tap Chip - ‘ [
il ~_ZDRAN_— |°
Msuh EEDDEEDEEE TS 5 DRAM
B )

bt chip 4o o == [II/O V30 nm Process """ " " IEE
TS¢

" [ “,LE.;?; A:ﬁ: ; I Logic st ic]

TSV : T substrate (Si _ Y mo

. + ( ) Column ADCs x 2 Logie ! =
: — i .5 140 nm Process
T iy | same chip size
Bottom Chip | Pixel load + D3 Array
HHHHHW
Samsung: 1.4 um pixels in 65 nm & 14 nm Fin-FET (3D Sony(left) 3D layer thinned to 3 um, DRAM for 960 fps
transistors) readout , wafer level stacking Samsung (right) 1.2 um pixel pitch, 2.5 um TSV 6.3 um pitch,

20 nm DRAM, 28 nm logic
* V. Re: https://indico.cern.ch/event/999816/



https://indico.cern.ch/event/999816/

Comparison of e-e collider beam parameters

Update to 100 - 5x 1034 cm2s1?

Beam parameters ILC CLIC FCC-ee CepC

Energy (TeV) 0.25 0.5 0.38 1.5 3 0.091 0.24 0.36 0.091 0.24
Luminosity (x 1034 cm2 s1) 1.35 1.8 1.5 3.7 5.9 230 8.5 1.7 32 2.93
Bunch train frequency (Hz) 5 50

Bunch separation (ns) 554 0.5 20 994 3000 25 680
Number of bunches / train - beam 1312 352 312 16640 393 48 12000 242
Integrated luminosity (ab1)/years 2/+11 4/+22 1/8 2.5/8 5/8 150/4 15/5 1.7/5 16/2 5.6/8
Main SM process ZH tt, ttH tt z WW, ZH tt z WW,ZH

Beam size at IP ox/oy/oz (um) 515/7.7/300 474/5.9/300 150/2.9/70 60/1.5/44 40/1/44



