Vertex (& tracking) detector @FCCee (CMOS technology)

Requirements, R&D, open questions

Not covered here, Various R&D e.g.:

AIDAInnova kickoff meeting (65nm: J.Baudot talk)

https://indico.cern.ch/event/1104064/timetable/#20220329.detailed

⇒VCI 2022 (CLIC R&D: D. Dannheim, 180nm: A. Dorokhov, 65nm: S. Bugiel, Tangerine: H. Wennlöf, Belle-2, ALICE ITS-3, EIC, etc.)

https://indico.cern.ch/event/1044975/contributions/?config=0d068a40-df13-42c0-b415-7cf8db16ac6c

⇒ALICE ITS-3 CERN seminar (Stitching, bent sensors, 65nm: M. Mager) https://indico.cern.ch/event/1071914/

Apr.2022 Saclay

A.Besson, Université de Strasbourg

Global strategy for vertex-tracking R&D

Detector R&D Roadmap: themes (DRDTs)

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass aiming to also perform in high fluence environments. To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial. For tracking and calorimetry applications MAPS arrays of very large areas, but reduced granularity are required for which cost and power aspects are critical R&D drivers. Passive CMOS designs are to be explored, as a complement to standard sensors fabricated in dedicated clean room facilities, towards hybrid detector modules where the sensors is bonded to an independent ASIC circuit. Passive CMOS sensors are good candidates for calorimetry applications where position precision and lightness are not major constraints (see Chapter 6). State-of-the-art commercial CMOS imaging sensor (CIS) technology should be explored for suitability in tracking and vertex detectors.

Synergies

ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather. **ECFA supports a series of workshops** with the aim to **share challenges and expertise, to explore synergies in their efforts** and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).

Goal: bring the entire e⁺e⁻ Higgs factory effort together, foster cooperation across various projects; collaborative research programmes are to emerge

Vertex detector IDEA/CLD

- - ✓ 25 μ m pitch vs 3 μ m resolution
 - Needs: high S/N and/or no binary output
 - ✓ Material budget 0.3% X₀/layer:
 - Conservative value
 - Beam pipe material budget ~ 0.3%X0
 - ✓ 5 layers vs 3 double layers
 - Robustness (standalone tracking), low momentum vs high momentum,
 - New player: Stitching & bent sensors vs double sided approach
 - \checkmark Inner and outer radius are key factors

Paolo Giacomelli (Annecy 2021)

Tracking

Strategy: on the road to Higgs factories

CMOS R&D lines

- 180 nm technology: MIMOSIS chips for CBM-MVD@ FAIR
 - ✓ = a milestone for Higgs factories (5µm spatial res./ ≤5µs
 time res./ 60µm thickness)
 - \checkmark MIMOSIS-1 (1st full scale prototype) under tests
 - \checkmark 3 test beam campaigns performed in 2021, 3 in 2022
 - Results match expectation
 - \checkmark Absolutely crucial to maintain know-how
 - 65 nm tech. Exploration
 - ✓ Main driver: CERN EP R&D WP 1.2 & ALICE ITS-3 upgrades
 - ✓ Priority: Validate the technology then optimize time resolution & granularity while keeping power low
 - Test beam (CE_65 prototype)
 - ✓ Financial support to ER1 (ER2 ?)
 - \checkmark Involvement in design and test: CE_65
- Stitching & large surfaces for very low mass detectors
 - ✓ Priority for Higgs factories in the future ⇒ Material budget & Large pixelated surfaces
 - Reassess double sided approach ?
 - Next submission in 65 nm technology (eng.run 1) with CERN in Q1 2021: prototypes to explore stitching (MOSS/MOST)
- Bent sensors (with ALPIDE ALICE ITS-3)
 - <u>https://indico.cern.ch/event/1071914/</u>
- Mid term (~2025-26)
 - \checkmark Complete MIMOSIS program
 - \checkmark Establish a demonstrator for Higgs factories in 65 nm
 - \checkmark Develop simulation & integration activities

Requirements

Time resolution in the context of e^+e^- colliders

Spatial resolution in Higgs factories

Material budget in Higgs factories

 $\sigma_{d0}^{2} = a^{2} + \left(\frac{b}{p.\sin^{3/2}\theta}\right)^{2}$

Driving parameter

✓ Inner radius

$$\Delta d_0|_{m.s.} \approx \frac{0.0136 \,\mathrm{GeV/c}}{\beta p_T} r_0 \sqrt{\frac{d}{X_0 \sin \theta}} \sqrt{1 + \frac{1}{2} \left(\frac{r_0}{L_0}\right) + \frac{N}{4} \left(\frac{r_0}{L_0}\right)^2}$$

✓ Beam pipe

- Constant term ~ 0.15-0.3 $\%~X_{0}$
- ✓ Material budget / layer
 - Requirement ~ ~0.15% X₀ /layer

FCC-ee CLD

Sensitivity to impact parameter resolution

- Material budget optimization
 - \checkmark Double sided approach
 - PLUME prototypes
 - ✓ Stitching (see later)
 - Larger surfaces (fill factor ?)
 - ✓ Bent sensors
 - Optimize inner layers
 - \checkmark Integration
 - Cooling system, mech. Support, cabling, Powering scheme, etc.

Power & cooling in Higgs Factories

<Power>(P.P.)

Ambitious

~12 W

Conservative

~31 W

 $(~10 \text{ mW/cm}^2)$

• Baseline:

Beam background rate

DBD

DBD

DBD x 2

DBD x 2

✓ air flow cooling only to minimize material budget

<Power (NO P.P.)

(W)

102 W (~30mW/cm²)

122 W (~33mW/cm²)

107 W

127 W

- ✓ Up to ~ 20 mW/cm²
- Driving parameters:
 - ✓ # channels, Time resolution / data flux
 - ✓ Surface (VXD ~ 3500 cm^2)

Read-out

speed

(µs)

4 μs

2 µs

4 μs

2 µs

- Power Pulsing (ILC/CLIC)
 - \checkmark Constraints more relaxed w.r.t. FCCee

Power Analog $(mW/chip)$	49.22
Power Bias $(mW/chip)$	4.5
Power PriorityEncoder $(mW/chip)$	4.219
Power DigitalPeriphery $(mW/chip)$	64.27
Power PLL $(mW/chip)$	18.5
Power Serializer With Data $(mW/chip)$	86.06
Power Serializer With No Data $(mW/chip)$	0
Power LVDS $(mW/chip)$	56.4

MIMOSIS like architecture, 180 nm

Period		Relative Energy	
E during train		225 mJ ~ 4 %	
E between train (Power ON)		380 mJ ~ 6 %	
E between train (Power OFF)		5740 mJ <mark>~ 90 %</mark>	
		Deletive	

Layers	Relative Power
Layers 0/1	~ 10 %
Layers 2/3	~ 35%
Layers 4/5	~ 55 %

14

Being generic: ILC & FCC differences

More details on 65nm

TJ-65 nm process: smaller feature size

- 65 nm feature size technology
 - ✓ (ALPIDE & MIMOSIS fabricated in 180 nm)
 - ✓ Larger wafers (⇔ 30 cm)
 - ✓ More functionalities inside the pixel
 - \checkmark Keeps pixel dimensions small \Rightarrow spatial res.
 - ✓ Potentially faster read-out
 - Lower Power consumption
 - TJ-65 nm available (since June 2020)
 - ✓ Main driver: CERN EP R&D WP 1.2 & ALICE ITS-3 upgrades ⇒ LS3 ~ 2024-26
 - ✓ involves IPHC/CPPM & R&D CMOS + DICE
 - ✓ Different requirements
 - EP: time resolution and radiation tol.
 - ALICE: granularity and material budget
 - Common R&D during the 1st years.
- ➡ First submission: MLR1 (Q4 2020)
- ⇒ Synergy with Higgs factories requirements
- ➡ Relation with foundries and access to options is a key factor

Apr.2022 Saclay

65nm: CE_65 prototypes

65 nm future plans

- Next submission: ER1
 - ✓ Goal: study Stitching/yield ⇒ Power distribution, signal routing, yield, Noise, etc.
 - CERN EP R&D WP 1.2 & ALICE ITS-3 upgrades
 - Submission: Q1 2022
 - Monolithic Stitched Sensor(MOSS) driven by CERN

✓ IPHC contributions to

- New matrices with analog output CE_65+ (e.g. Staggered pixels)
- Matrices with disciminators
- Contribution to the Stitching exploration (MOSS & MOST)
- Beyond ER1 ⇔ ER2 (2022-23) dedicated to ITS-3

Summary

- VTX and tracking R&D
 - ✓ CMOS/MAPS = baseline for inner tracking in Higgs factories
 - probably still true up to next European strategy update
 - Mid-term applications (ALICE ITS-3, Belle-2 upgrade, etc.)
 - ✓ Efforts needed towards
 - Improved Power consumption (~20-50 mW/cm²), time resolution (0.5-1 $\mu s)$ and spatial resolution (~3 $\mu m)$
 - Material budget (~0.1-0.2%X₀/layer) ⇒ Bent sensors + stitching
 - Targeting a FCCee demonstrator ~ 2025-26
 - ✓ Longer term: emerging technologies (e.g. interconnexion, wireless, etc.)
- Detector optimization
 - ✓ Specialist or general purpose ?
- « Parents pauvres » (manpower issues)
 - ✓ R&D groups mostly focused on chip designs
 - ✓ Software studies:
 - Design choice-Detector performances-physics performances
 - ✓ Integration
 - Strong interplay between beam pipe, services, barrel-disks forward detectors (e.g. lumi)
 - Monitoring, cooling, cable routing, Alignment, Powering scheme, mechanics, data flow, etc.
 - Global strategy needed \Rightarrow federate French contribution ?

e⁺e⁻ collider beam parameters

Linear	ILC		CLIC		
Parameter	250 GeV	500 GeV	380 GeV	1.5 TeV	3 TeV
Luminosity L (10 ³⁴ cm ⁻² sec ⁻¹)	1.35	1.8	1.5	3.7	5.9
L > 99% of √s (10 ³⁴ cm ⁻² sec ⁻¹)	1.0	1.0	0.9	1.4	2.0
Repetition frequency (Hz)	5	5	50	50	50
Bunch separation (ns)	554	554	0.5	0.5	0.5 🔺
Number of bunches per train	1312	1312	352	312	312
Beam size at IP σ _x /σ _y (nm)	515/7.7	474/5.9	150/2.9	~60/1.5	~40/1
Beam size at IP σ _z (μm)	300	300	70	44	44
ILC: Crossing angle 14 mrad, e ⁻ polarization ±80%, e ⁺ polarization ±30% CLIC: Crossing angle 20 mrad, e ⁻ polarization ±80% Very small beams + Very small bunch separation at CLIC drives timing					
=> beamstrahlung	requirements for detector				
Very low duty cycle at ILC/CLIC allows for: Triggerless readout Power pulsing 1 train = 312 bunches, 0.5 ns apart - not to scale -					
Mogens Dam / NBI Copenhagen AIDA++ Open Meeting, CERN					

Circular		FCC-ee		CE	PC
					4
	Z	Higgs	ttbar	Z (2T)	Higgs
\sqrt{S} [GeV]	91.2	240	365	91.2	240
Luminosity / IP (10 ³⁴ cm ⁻² s ⁻¹)	230	8.5	1.7	32	1.5
no. of bunches / beam	16640	393	48	12000	242
Bunch separation (ns)	20	994	3000	25	680
Beam size at IP σ _x /σ _y (μm/nm)	6.4/28	14/36	38/68	6.0/40	20.9/60
Bunch length (SR/BS) (mm) Beam size at IP σ _z (mm)	3.5/12.1	3.3/5.3	2.0/2.5	8.5	4.4
Beam transverse polarisation					

=> beam energy can be measured to very high accuracy (~50 keV)

At Z-peak, very high luminosities and very high e⁺e⁻ cross section (40 nb)

- ⇒ Statistical accuracies at $10^{-4} \cdot 10^{-5}$ level ⇒ drives detector performance requirements
- ⇒ Small systematic errors required to match
- \Rightarrow This also drives requirement on data rates (physics rates 100 kHz)
- \Rightarrow Triggerless readout likely still possible

Beam-induced background, from beamstrahlung + synchrotron radiation

Most significant at 365 GeV

4 September, 2019

Mitigated through MDI design and detector design

Modified from Lucie Linssen, ESPPU, 2019

6

(slide from Mogens Dam/Lucie Linssen)

200 or 100 ms (5 or 10 Hz) train duration = 727 (baseline) or 961 (Lupgrade) µs

train duration = 727 (baseline) or 961 (Lupgrade

Bunch spacing = 554 (baseline) or 366 (Lupgrade) ns

1 train = 1314 (baseline) or 2625 (Lupgrade) bunches

A.Besson, Université de Strasbourg

Collider parameters

FCC-ee collider parameters

parameter	z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

30/11/2021

Detector concepts for FCC-ee - Paolo Giacomelli

28

AC / DC pixels

DC Pixels (~ALPIDE) & AC pixels (top bias up to > 20V)

- ✓ Amplifier / shaper / discriminator chain similar to ALPIDE in both scheme
- ✓ Data driven readout
- ✓ Pulse injection for calibration
- ✓ Pixel masking options

CMOS pixel sensor (CPS) for charged particle detection

- Main features
 - \checkmark Monolithic (Signal created in low doped thin epitaxial layer ~10-30 $\mu m)$
 - Thermal diffusion of e- (Limited depleted region) + drift
 - Charge collection: N-Well diodes (Charge sharing)
 - ✓ Continuous charge collection (No dead time)
- Main advantages
 - ✓ Granularity
 - ✓ Material budget
 - \checkmark Signal processing integrated in the sensor
 - Low signal & Low Noise
 - Flexible running conditions (Temperature, Power, Rad. Tol.)
 - ✓ Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology,
 - Possible frequent submissions
- Main limitations

 Industry addresses applications far from HEP experiments concerns

 \checkmark Needs adapted processes

Modified (mod): full depletion, faster charge collection

A.Besson, Université de Strasbourg

P" EPITAXIAL LAYER

OFFP PART

Standard (std): no full depletion

DEPLETED ZONE

DEPLETION

CHIMPART

MIMOSIS requirements

Requirements	1/mm ² /collision	Physics parameter	Requirements
	2.5	Spatial resolution	~ 5 um
Vacuum	simulations	Time resolution	~ 5 us
		Material budget	0.05% X ₀
y-axis [cm]	Ê 0.5 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	Power consumption	< 100 – 200 mW/cm ²
		Operation temperature	- 40 °C to 30 °C
		Temp gradient on sensor	< 5K
		Radiation tol* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²
	Average Hit density	Radiation tol* (ionizing)	~ 5 MRad
	$-2.5_{-2.5}$ -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 0 x-axis [cm]	Data flow (peak hit rate)	@ 7 x 10 ⁵ / (mm ² s) > 2 Gbit/s
CBM-MVD@ FAIR	-sided thin planar detector stat	ions	

- 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV
- 100 kHz AU+AU @ 11 AGEV and 10GHz p+Au @ 30 AGE
- Non uniform hit density in time and space
- High radiation environment, operating in vacuum

• MIMOSIS chip

- ✓ Based on ALPIDE architecture
- ✓ Discriminator on 27x30µm² pixel
- \checkmark Multiple data concentration steps
- ✓ Elastic output buffer

<u>3</u> 0 1

- ✓ 8 x 320 Mbps links (switchable)
- ✓ Triple redundant electronics

Parameter	Value
Technology	TowerJazz 180 nm
Epi layer	\sim 25 μm
Epi layer resistivity	$> 1 k \Omega cm$
Sensor thickness	60 µ m
Pixel size	26.88 µm × 30.24 µm
Matrix size	1024 imes 504 (516096 pix)
Matrix area	\approx 4.2 cm ²
Matrix readout time	5 µs (event driven)
Power consumption	$40-70 \mathrm{mW/cm^2}$

MIMOSIS = a milestone for Higgs factories (5 μ m / \leq 5 μ s)

MIMOSIS roadmap

- 4 prototypes:
- MIMOSIS-0: = 2 regions
 - ✓ Tests (2018-2019)
 - Testability
- MIMOSIS-1: 1st full size

prototype

- ✓ Elastic buffer, SEE hardened
- ✓ Fabricated in 2020
- ✓ Lab/beam test campaign in 2021
- MIMOSIS-2:
 - ✓ On-chip clustering
 - ✓ Q4 2021 ⇒ tests in 2022
- MIMOSIS-3: final pre-production sensor

✓ ≥2023

⇒ architecture adaptable to a fast sensor for an ILC vertex detector

MIMOSIS-C

Apr.2022 Saclay

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

MIMOSIS beam test preliminary results

✓ DC pixels, no back bias applied)

Noise

D

room T°C

28

్ల్ 16

12

THERMAL NOISE: 3 - 5 e ENC

h pixel noise

Entries

Std Dev

Material budget: Bent sensors & stitching

- ✓ collaboration with ALICE-ITS3
- ✓ Know-how acquired for bent bonding.

Bending / bonding Or Bonding / bending ⇒Functionnal tests

Université de Strasbourg

and the second of the second		<u> </u>	ing CPS	
	ULTIMATE	ALPIDE	MIMOSIS	PSIRA proposal
	STAR-PXL	ALICE-ITS	CBM-MVD	ILD-VXD
Data taking	2014-2016	>2021-2022	>2021	>2030
Technology	AMS-opto 0.35 μm	0.18 μm	0.18 μm	0.18 μm (conservative) < 0.18 μm ?
	4M	HR, V _{bias} ~-6V Deep P-well	HR, Deep P-well	?
Architecture	Rolling shutter + sparsification + binary output	Data driven r.o. In pixel discri.	Data driven r.o. In pixel discri.	Data driven r.o. (conservative)
Pitch (μm^2) / Sp. Res.	20.7 x 20.7 / 3.7	27 x 29 / 5	27 x 30 / <5	~ 22 / ~ 4 OR ~ 17/3
Time resolution (μ s)	~185	5-10	5	1-4
Data Flow		~10 ⁶ part/cm ² /s Peak data rate ~ 0.9 Gbits/s	peak hit rate @ 7 x 10 ⁵ /mm²/s >2 Gbits/s output (20 inside chip)	~375 Gbits/s (instantaneous) ~1166Mbits / s (average)
Radiation	O(50 kRad)/year	2x10 ¹² n _{eq} /cm ² 300 kRad	3x10 ¹³ n _{eq} /cm ² /yr & 3 MRad/yr	O(100 kRad)/year & O(1x10 ¹¹ n _{eq} (1MeV)) /yr
Power (mW/cm ²)	< 150 mW/cm ²	< 40 mW/cm ²	< 200 mW/cm ²	~ 50-100 mW/cm ² + Power Pulsing
Surface	2 layers, 400 sensors, 360x10 ⁶ pixels 0.15 m ²	7 layers, 25x10 ³ sensors > 10 m ²	4 stations Fixed target	3 double layers 10 ³ sensors (4cm ²) 10 ⁹ pixels ~0.33 m ²
Mat. Budget	~ 0.39 % X ₀ (1st layer)	~ 0.3% X ₀ / layer		~ 0.15-0.2 % X ₀ / layer
Remarks	1 st CPS in colliding exp.	(with CERN)	Vacuum operation Elastic buffer	Evolving requirements 30