

MiniCACTUS: Sub-100ps timing with CMOS DMAPS

Yavuz Degerli, Fabrice Guilloux, Jean-Pierre Meyer, Philippe Schwemling (IRFU) Tomasz Hemperek (Univ. Bonn)

29 March 2022

TIMING WITH HV-CMOS/DMAPS*

- The objective of this R&D is the development of a monolithic timing sensor in a commercial HV-CMOS process for future high energy physics experiments or for LHC upgrades (timing detectors, after phase 2 upgrades)
- □ LFoundry 150 nm HV-CMOS is one of the CMOS processes studied extensively for the CMOS option of the ATLAS Inner Tracker Upgrade
- Several large size demonstrators already designed and tested for tracking applications (LF-CPIX, LF-MONOPIX1, LF-MONOPIX2) in this process with proven radiation hardness (Bonn, IRFU and CPPM coll.)
- The monolithic sensors potentially cheaper and more reliable than dedicated hybrid solutions
- Possibility to integrate all functionalities (detection, analog + digital signal processing) on the same chip
- □ Wafers can be **thinned** and **backside processed** (for backside polarization and good charge collection uniformity)

HV-CMOS Sensor Pixel

- DNW/HR p-substrate charge collection diode
- HV (\geq 300 V) applied on the substrate (from top or back)
- Large depletion depth with HR wafers (\geq 300 μ m)
- Charge collection by <u>drift</u> (fast)
- No internal amplification
- Electronics can be integrated inside charge collection diode
 - \rightarrow Particularly suitable for timing

CACTUS* DEVELOPMENT

- □ The first demonstrator called **CACTUS** for timing in LF 150 nm process designed in 2019
- □ The front-end in CACTUS is based on an **in-pixel fast preamplifier** followed by a **leading edge discriminator**
- □ Time walk corrections done off-line by **ToT measurement**
- Promising results obtained with the CACTUS detector developed in this process (high breakdown voltage, homogenous charge collection, deep depletion depth, good yield), but very low S/N observed
- Very long & large power rails needed to distribute power into pixels increased significantly detector capacitance in CACTUS
- Timing possible only with high thresholds (leading to very low efficiency)

[<u>Y. Degerli et al. JINST 15, 2020]</u>

The CACTUS demonstrator on PCB (chip size : 1 cm x 1 cm)

*CMOS ACtive Timing µSensor

MiniCACTUS Sensor Chip

- MiniCACTUS is a smaller detector prototype designed in order to address the *low S/N issue* observed on previous CACTUS large size demonstrator
- Main change in MiniCACTUS: FE integrated at column level, pixels mostly passive
- On-chip Slow Control, DACs, bias circuitry
- 2 discrimated digital (LVDS) and 2 analog monitoring (*slower than CSA output*) outputs for 2 columns

Pixel Flavors :
Pixels 3 & 7 : 1 mm x 1 mm baseline pixels
Pixels 2, 4, 6 & 8 : 0.5 mm x 1 mm pixels
Pixel 8 : 0.5 mm x 1 mm pixel with in-pixel AC coupling capacitor (20pF)
Pixels 1 : 50 μm x 50 μm test pixel
Pixels 5 : 50 μm x 150 μm test pixel

□ Front-end mostly optimized for 1 mm² pixels with peaking time of 1-2 ns @ 1-2pF (Ibias_total=800µA \rightarrow P ≈ 150mW/cm²)

- □ Small pixels are test structures to study charge collection (FEs not power optimized)
- \Box Some detectors thinned to 100 μ m/200 μ m and than post-processed for backside polarization after fabrication

yavuz.degerli@cea.fr

IN-LAB TESTS

- → Best S/N observed on pixel 8 (0.5mm²) among large pixels
- → Sensors can be biased safely @ -300V (checked on several chips with different thicknesses: 100 µm, 200µm, unthinned)
- → Noise_{DigOut}: 179.4e- (chip#5_200µm) 155.9e- (chip#8_100µm)

TESTBENCH OF MINICACTUS IN TESTBEAM

Setup installed on H4 line at SPS-CERN during RD-51 test-beam period in parasitic mode (October 2021)

TESTBENCH OF MINICACTUS IN TESTBEAM

Setup installed on H4 line at SPS-CERN during RD-51 test-beam period in parasitic mode (October 2021)

DETECTORS TESTED AND DATA TAKEN DURING TEST-BEAM

Several pixels from 2 different detectors with various HV (200V, 280V) and bias conditions tested during the 2 weeks:

- 1 detector with 200 μm thickness (chip#5) running almost continuously during ~12 days (muons and pions)
- 1 detector with 100 µm thickness (chip#8) running during the last 2 days

□ 190 k triggers collected (μ,π) → allows to study energy deposits, Landau distributions, noise

 \Box 115 k triggers are in coincidence with beamline MCP \rightarrow time resolution studies

 \Box 8k triggers are in coincidence with beam telescope \rightarrow uniformity studies (to be done...)

TYPICAL WAVEFORMS OBSERVED DURING TESTBEAM

 \rightarrow Ringing on Digital Output due to coupling from the digital buffers

(known problem from in-lab tests, negative impact on TW corrections from digital ToT)

REFERENCE PERFORMANCE PLOTS

Chip#5, pixel 8, 0.5 x 1 mm², 200 μm, -280V (Back-side pol.)

Measured timing resolution : **88 ps** (MCP resolution negligible)

Worse timing resolution measured with 100 µm sensor (*lower S/N* and *ringing from digital*)

Small pixels have worse performance, probably due to charge sharing effects (*pixel 5 tested in testbeam*)

yavuz.degerli@cea.fr

_

_

POST-TESTBEAM IN-LAB TESTS

- □ In order to understand limiting factors for timing, in-lab tests still going on
- □ Reconstruction of the **internal analog signal** to get an idea of the charge collection time (or rise time)
- □ Timing measurements using the ⁹⁰Sr source with different FE parameters to look for an optimal parameter set
- □ The noise seems currently the main limiting factor with the current FE, the timing improves when noise is filtered
- **We** will also try higher substrate thicknesses (**300 μm**) to increase the signal level (*sensors expected mid-April*)
- We know from signal amplitude measurements on 100 μm sensors and 200 μm sensors that we will be able to deplete completely a 300 μm thick sensor
- □ New test-beam campaigns are planned in May and July 2022

INTERNAL ANALOG PULSESHAPE RECONSTRUCTION FROM DIGITAL OUTPUT

 $\mathsf{V}_{\mathsf{inj}}$

l_{inj}

fall

- Charge Injection → Vpeak AmpOut ~ 150 mV (MPV of MIPs for a 200 µm thick sensor)
- Input injection pulse Rise/Fall Time = 1.8 ns
- FE Internal Pulse Rise Time \approx 1.7 ns
- Jitter : 22.6 ps (not realistic case)

• Charge Injection \rightarrow Vpeak AmpOut ~ 150 mV

- Input Rise/Fall Time = 5.0 ns
- Pulse Rise Time ≈ 4.8 ns
- Jitter : 64.9 ps
- \rightarrow The FE follows well a 1.8 ns falling edge digital injection pulse

INTERNAL ANALOG PULSESHAPE RECONSTRUCTION ATTEMP

- Internal pulseshape reconstruction not very precise, but enough to get an idea of the shape and the rise time
- Rise time is of the order of **4-5 ns** for 200 µm and 100 µm
- The unthinned 700 µm chip are clearly slower
- Rise time decreases somewhat with HV
- With these results, for a given thickness and bias voltage, the noise of the FE seems to be the limiting factor of the current timing resolution

BREAKDOWN VOLTAGE MEASUREMENTS

- Same LF15A process used for both chips
- Same guard rings used for both chips (MiniCACTUS uses Ver. B CACTUS rings)
- Same postprocessing for both chips (as far as we know)

- The tested two 200 μ chips break down above 500 V !
- Why is there such a difference between the 100 μ m and 200 μ m chips, and between MiniCACTUS 200 μ m and others?
 - Thickness ? (But tested thinned and unthinned CACTUS had same BV...)
 - Post-processing, dicing details/parameters ?
 - Wafer characteristics ?

Found similar BV for thinned and unthinned chips

Version B BV is around 350 V.

IN-LAB TIMING MEASUREMENTS WITH PMT AND ⁹⁰Sr SOURCE

Chip#5, pixel 8, 0.5 x 1 mm², 200 μm

Digit MINI1 TOT (ns)

CONCLUSIONS AND NEXT STEPS

- □ Present test-beam results of MiniCACTUS prototype consistent with in-lab results obtained using ⁹⁰Sr source
- □ Significant improvements observed on MiniCACTUS compared with the previous CACTUS demonstrator
- Up to now, best timing results obtained in test-beam with 200 μm sample, 500 μm ×1000 μm pixel (~88 ps), including the on-chip analog front-end and the discriminator.
- The timing resolution of 100 μm sample is not better due to the *lower signal level* and *ringing from digital*
- These results, plus understanding of the internal pulseshapes, collection time, gives directions for FE re-optimization and design evolution of the CACTUS concept
- □ Short term: New testbeam campaigns planned in May 2022 :
 - → tests of **200 µm** samples with optimized FE parameters and increased bias voltage
 - \rightarrow tests of **300 \mum** samples if in-lab tests promising

□ Medium term: Irradiation tests to confirm radiation tolerance of the technology

□ A new prototype submission is planned this year with

→ optimized FE (CSA + Discriminator)

→ improved digital buffering to address ringing issue

ANNEXES

yavuz.degerli@cea.fr

GUARD-RINGS OF LF-MONOPIX1

[M. Barbero et al. JINST 15, 2020]

241Am Amplitude Spectrum (pixel 5, 50 μm x 150 μm)

COUPLING FROM DIGITAL BUFFERS

(Chip#4, pixel 8)

