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Pushing the boundaries of electroweak processes and
complex final states
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Rich final states, new techniques, and
motivated benchmark scenarios.
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Supersymmetry (SUSY) Searches and Strategies
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Search strategies employed (briefly)

4

Analysis Strategy

Cut and count analysis
Discriminating variables used to define
signal-enriched regions (SRs), based on
specific benchmark models
Yields are compared with the ones
predicted by the Standard Model
Minor backgrounds are taken from Monte
Carlo
For the major background, tt , the shape
is taken from Monte Carlo, but the
normalization is data-driven
tt normalization derived in control regions
(CRs), and tested in validation regions
(VRs)
SRs, CRs and VRs are orthogonal

HistFitter and analysis strategies

Analysis strategy and framework

HistFitter was built around the concept of control, validation and signal regions.

Control regions to constrain
the backgrounds.

Extrapolation to signal
regions.

Validation regions to check
the extrapolation.

All regions orthogonal!
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� Standard analysis strategy, rigorously implemented in HistFitter.

Jeanette Lorenz (LMU) Introduction to HistFitter 26.06.2014 7
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Design signal regions to target specific regions of parameter space
Use dedicated search techniques, in particular for hadronic signatures

Tailor observables to target corners dominated by initial state radiation
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ATLAS search highlights covered in this talk

1 Searches for electroweakinos and axinos
in all-hadronic W/Z/h final states
→ arXiv:1812.09432 arXiv:2108.07586

2 Searches for electroweakinos and
higgsinos with leptons and jets
→ arXiv:2204.13072

3 Searches for charginos with multilepton
signatures
→ arXiv:2209.13935
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See also: Risa Ushioda’s long-lived particle talk (Mon@15:45)
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Comprehensive W/Z/h search program in ATLAS
arXiv:1812.09432 arXiv:2108.07586 arXiv:2204.13072 arXiv:2209.13935 ATLAS-CONF-2022-057 & more!
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Where do we stand with these W/Z/h final states?
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1 + Z 100% χ̃0
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Hadronic searches are driving sensitivity at high-mass, regardless of
χ̃0

2 decay (h or Z)
Leptonic searches and Emiss

T drive sensitivity for compressed regions
3 leptons and soft 2 leptons for χ̃0

2 → χ̃0
1 + Z, 1 lepton for χ̃0

2 → χ̃0
1 + h

Higgs and W/Z masses often used to construct control (CR), validation
(VR), and signal regions (SR)

Excellent jet reconstruction and boosted object tagging needed
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First search for EWK hadronic Wh signatures: 36 fb−1

arXiv:1812.09432 (Dec 2018)

Introduction

I All-hadronic final state
• ‰̃±1 ‰̃0

2 æ Wh‰̃0
1‰̃0

1 æ qq̄bb̄+ Emiss
T

• 2 b-jets + 2 non-b-jets + Emiss
T

• Targeting the high-m
‰̃±2 ,‰̃0

2
region

I Using 36.1 fb≠1 2015 + 2016 data
I Resolved final state

• Studies of boosted topology did not
show competitive performance

16

(a) One lepton and two b-jets channel (b) One lepton and two photons channel
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(c) Same-sign dilepton channel
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(d) Combination

Fig. 8 Observed (solid line) and expected (dashed line) 95% CL exclusion regions in the mass plane of m�̃0
1

vs. m
�̃0

2,�̃±
1

in the simplified model. The combination in (d) is obtained using the result from the ATLAS three-lepton search [21] in
addition to the three channels reported in this paper. The dotted lines around the observed limit represent the results obtained
when changing the nominal signal cross section up or down by the ±1�SUSY

theory theoretical uncertainty. The solid band around
the expected limit shows the ±1�exp uncertainty band where all uncertainties, except those on the signal cross sections, are
considered.

single non-negative normalisation parameter is used to
describe the signal model in all channels.

Systematic uncertainties on the signal expectations
stemming from detector e↵ects are included in the fit
in the same way as for the backgrounds. Theoreti-
cal systematic uncertainties on the signal cross section
described in Sect. 3 are not included directly in the
fit. In all resulting exclusions the dashed (black) and

solid (red) lines show the 95% CL expected and ob-
served limits respectively, including all uncertainties ex-
cept for the theoretical signal cross-section uncertainty.
The (yellow) bands around the expected limit show the
±1�exp expectations. The dotted ±1�SUSY

theory (red) lines
around the observed limit represent the results obtained
when changing the nominal signal cross section up or

(a) ATLAS Run I
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J. Olsson (UChicago) | EWK WH all-had, Full Analysis Review | January 26, 2018 2
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Tight selections on moderately boosted Higgs and W bosons
Emiss

T (triggers), lepton veto, large Meff required for all signal regions

Higgs and W masses used to construct CR, VR, and SR definitions
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First search for EWK hadronic Wh signatures: 36 fb−1

arXiv:1812.09432 (Dec 2018)
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Fat jets, D2, & Ntrack, with loosened Ntrack cut: Ntrack ≤ 32 (34) for
W(Z) tagging compared to standard ATLAS tagging

Z → bb̄ and h→ bb̄-tagging requires two b-jets inside the fat jet and
mass peak consistent with Z(h) bosons.
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Dramatic increase in sensitivity: ∼700 GeV→∼1 TeV exclusions!
50% branching fraction for χ̃0

2 → χ̃0
1 + Z/h (left), all hadronic search

relatively insensitive to nature of χ̃0
2 decay

First interpretation of EWK signatures with an axino (ã) LSP
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Search for EWK SUSY using Wh signatures: 139 fb−1

arXiv:2108.07586

200 300 400 500 600 700 800 900 10001100

) [GeV]
2

0
χ∼, 

1

±
χ∼m(

0

100

200

300

400

500

) 
[G

e
V

]
10
χ∼

m
(

) +
 1

25
 G

eV

1

0
χ∼

) <
 m

(
2

0
χ∼/

1

±
χ∼

m
(

[1812.09432]γγ, 1l
-1

36.1 fb

[1812.09432]b, 1lb
-1

36.1 fb

[1812.09432]b, 0lb
-1

36.1 fb

[1812.09432]
±
l
±

, l
-1

36.1 fb

[2004.10894]γγ, 1l
-1

139 fb

[1909.09226]b, 1lb
-1

139 fb

, 3l [2106.01676]
-1

139 fb

, 0l [2108.07586]
-1

139 fb

ATLAS Preliminary

1

0
χ∼

1

0
χ∼Wh →

1

±
χ∼

2

0
χ∼ -1=13 TeV, 36.1 - 139 fbs June 2021

All limits at 95% CL

Expected

Observed

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022 November 17, 2022 13 / 19

https://arxiv.org/abs/2108.07586


Searches for EWK-inos and higgsinos with leptons and jets
Phys. Rev. D 98 (2018) 092012 (arXiv:1806.02293) → arXiv:2204.13072
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Recursive jigsaw reconstruction (RJR) decomposes events according to a
particular decay topology assumption and partitions kinematics to estimate
missing degrees of freedom
Analysis aimed at checking previously observed excesses of 2.0σ and 1.4σ from
36 fb−1 persist with more data.

The same 36 fb−1 13 TeV analysis also included 3` regions which had 3.0σ and 2.1σ
excesses above the Standard Model expectations, which were not observed with more data
(see Phys. Rev. D 101 (2020) 072001 [arXiv:1912.08479])
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Searches for EWK-inos and higgsinos with leptons and jets
arXiv:2204.13072
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Searches for EWK-inos and higgsinos with leptons and jets
arXiv:2204.13072
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Searches for charginos with multilepton signatures
arXiv:2209.13935
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Signal similar to SM WW, see WW unfolding analysis [arXiv:2206.15231]

Same-flavour (SF) and different-flavour (DF) lepton signal regions

SRs use binned BDT output for DF and SF events
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Searches for charginos with multilepton signatures
arXiv:2209.13935
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Significantly extend the limits in low to moderate mass difference region
(up to 150 GeV) between chargino and neutralino

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022 November 17, 2022 18 / 19

https://arxiv.org/abs/2209.13935


Summary and conclusions

Electroweak SUSY searches with sensitive hadronic and leptonic
final state observables are pushing sensitivities to the TeV scale!

Fully-hadronic searches important even for electroweak searches

Significant increases in sensitivity for Electroweak / Higgsino
searches with the full Run 2 dataset

Extending the interpretations even farther by varying branching fractions
and introducing additional models, such as the axino LSP

Search strategies are successful, but also need to move into more
complex models and phase space

Taking an inclusive perspective where possible, and investigating
additional model parameters to vary in order to assess and eventually
expand sensitivity

Thank you!
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Common observables used in 13 TeV searches for SUSY
For the 13 TeV ATLAS searches, we utilize each of these classes:

Missing energy-type:
Missing transverse momentum: Emiss

T and ~pT
miss

Missing transverse momentum significance: Emiss
T /
√

HT
RJigsaw H-scale for 1 visible, 1 invisible state: HPP

1,1 (Similar to Emiss
T )

Energy scale-type:
Effective mass: Meff =

∑
jets

pT +
∑

leptons

+Emiss
T (also considering only first 4 jets)

Scalar sum of visible momenta: HT,

Transverse mass: mT =

√
2p`TEmiss

T (1− cos(∆φ( ~pT
miss, `)) (b-quarks can also replace the lepton)

RJigsaw H-scale: HPP
2,1, HPP

4,1 (Similar to Meff)

RJigsaw ISR pT scale: |pISR
TS | (sum pT of ISR jets

Energy structure-type:
Jet multiplicity: Njet, Nb−jet

Total jet mass: MΣ
J =

∑
mjet

(also considering only first 4 large-radius jets)

Angular distributions: ∆φ4j
min = min(|φany−jet − ~pT

miss|) > 0.4 (for all 0` selections)

Aplanarity: A = (3/2)λ3
QCD Emiss

T alignment: ∆QCD (signed asymmetry between Emiss
T and jet azimuthal directions)
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586

Table 1: Summary of the production modes, final states, and signal regions (SRs) used for the hypothesis tests, and
the branching ratio assumptions for the signal models targeted in the search. The notation and definition of the
SRs are described in Section ??. The (W̃, B̃) and (H̃, G̃) models are used to optimize the selection, and the rest
are considered in the interpretation. The (W̃, B̃) simplified models ((W̃, B̃)-SIM) discussed in Section ?? are also
interpreted in order to allow comparisons with the ATLAS electroweakino search results .

Model Production Final states SRs simultaneously fitted Branching ratio

(W̃ ,B̃) χ̃±1 χ̃
∓
1 , χ̃

±
1 χ̃

0
2 WW,W Z,W h 4Q-VV, 2B2Q-WZ, 2B2Q-Wh B( χ̃±1 → W χ̃0

1) = 1
B( χ̃0

2 → Z χ̃0
1) scanned

(H̃ ,B̃)
χ̃±1 χ̃

∓
1 , χ̃

±
1 χ̃

0
2,

χ̃±1 χ̃
0
3, χ̃

0
2 χ̃

0
3

WW,W Z,W h,
Z Z, Zh, hh 4Q-VV, 2B2Q-VZ, 2B2Q-Vh

B( χ̃±1 → W χ̃0
1) = 1

B( χ̃0
2 → Z χ̃0

1) scanned
B( χ̃0

3 → Z χ̃0
1) = 1 − B( χ̃0

2 → Z χ̃0
1)

(W̃ ,H̃) χ̃±2 χ̃
∓
2 , χ̃

±
2 χ̃

0
3

WW,W Z,W h, 4Q-VV, 2B2Q-VZ, 2B2Q-Vh Determined from (M2, µ, tan β)
Z Z, Zh, hh

(H̃ ,W̃ ) χ̃±2 χ̃
∓
2 , χ̃

±
2 χ̃

0
2, WW,W Z,W h, 4Q-VV, 2B2Q-VZ, 2B2Q-Vh Determined from (M2, µ, tan β)

χ̃±2 χ̃
0
3, χ̃

0
2 χ̃

0
3 Z Z, Zh, hh

(H̃ ,G̃) χ̃±1 χ̃
∓
1 , χ̃

±
1 χ̃

0
1, Z Z, Zh, hh 4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh B( χ̃0

1 → ZG̃) scanned
χ̃±1 χ̃

0
2, χ̃

0
1 χ̃

0
2

(H̃ ,ã) χ̃±1 χ̃
∓
1 , χ̃

±
1 χ̃

0
1, Z Z, Zh, hh 4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh B( χ̃0

1 → Zã) scanned
χ̃±1 χ̃

0
2, χ̃

0
1 χ̃

0
2

(W̃, B̃) simplified models: (W̃, B̃)-SIM

C1C1-WW χ̃±1 χ̃
∓
1 WW 4Q-WW B( χ̃±1 → W χ̃0

1) = 1

C1N2-WZ χ̃±1 χ̃
0
2 W Z 4Q-WZ, 2B2Q-WZ B( χ̃±1 → W χ̃0

1) = B( χ̃0
2 → Z χ̃0

1) = 1

C1N2-Wh χ̃±1 χ̃
0
2 W h 2B2Q-Wh B( χ̃±1 → W χ̃0

1) = B( χ̃0
2 → h χ̃0

1) = 1
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586

SR(CR0L) VR(CR)1L VR(CR)1Y VRTTX4Q 2B2Q 4Q 2B2Q 4Q 2B2Q

nLarge-R jets ≥ 2 ≥ 2 ≥ 2 = 1
nlepton = 0 = 1 = 0 = 3
pT(`1) [GeV] - > 30 - > 30
nphoton - - = 1 -

n(Vqq) = 2 (= 1) = 1 (= 0) = 2 (= 1) = 1 (= 0) = 2 (= 1) = 1 (= 0) -
n(!Vqq) = 0 (= 1) = 0 (= 1) = 0 (= 1) = 0 (= 1) = 0 (= 1) = 0 (= 1) -

n(Jbb) = 0 = 1 = 0 = 1 = 0 = 1 = 1
m(Jbb) [GeV] - ∈ [70, 135 (150)] - ∈ [70, 150] - ∈ [70, 150] -

nunmatched
b-jet = 0 = 0 = 0 -

nb-jet ≤ 1 - = 0 - ≤ 1 - -

Emiss
T [GeV] > 300 > 200 > 50 < 200 -

pT(W ) [GeV] - > 200 - -
pT(γ) [GeV] - - > 200 -
meff [GeV] > 1300 > 1000 (> 900) > 1000 > 900 > 1000 > 900 -
min∆φ(Emiss

T , j) > 1.0 > 1.0 > 1.0 -
mT2 [GeV] - > 250 - > 250 - > 250 -
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586

n(Wqq) n(Zqq) n(Vqq) n(Zbb) n(hbb)

4Q-WW = 2 - = 2 = 0 = 0
4Q-WZ ≥ 1 ≥ 1 = 2 = 0 = 0
4Q-ZZ - = 2 = 2 = 0 = 0
4Q-VV - - = 2 = 0 = 0

2B2Q-WZ = 1 - = 1 = 1 = 0
2B2Q-ZZ - = 1 = 1 = 1 = 0
2B2Q-Wh = 1 - = 1 = 0 = 1
2B2Q-Zh - = 1 = 1 = 0 = 1
2B2Q-VZ - - = 1 = 1 = 0
2B2Q-Vh - - = 1 = 0 = 1

Region CR1L-4Q VR1L-4Q CR1L-2B2Q VR1L-2B2Q
Observed 439 13 96 5

Post-fit 439 ± 21 22.0 ± 3.4 96 ± 10 7.8 ± 1.5

W+jets 325 ± 16 13.4 ± 2.2 48 ± 5 3.4 ± 0.7
Z+jets 4.45 ± 0.21 0.198 ± 0.035 0.58 ± 0.06 0.044 ± 0.012
γ+jets < 1 - 0.57 ± 0.06 0.22 ± 0.10
VV 65.4 ± 3.1 4.1 ± 0.8 6.9 ± 0.7 0.55 ± 0.15
Vγ < 1 - < 0.1 -
VVV 1.3 ± 0.6 0.52 ± 0.28 0.14 ± 0.08 0.09 ± 0.05
tt̄ 30.4 ± 1.5 2.7 ± 0.4 24.0 ± 2.5 1.8 ± 0.4
t+X 11.0 ± 0.5 0.91 ± 0.21 13.2 ± 1.4 1.27 ± 0.34
tt̄+X 1.5 ± 1.2 0.16 ± 0.12 1.5 ± 1.1 0.4 ± 0.4
V h < 0.1 < 0.001 0.69 ± 0.07 0.046 ± 0.009

Region CR1Y-4Q VR1Y-4Q CR1Y-2B2Q VR1Y-2B2Q
Observed 1001 38 127 14

Post-fit 1001 ± 32 43 ± 8 127 ± 11 8.6 ± 2.0

W+jets 2.59 ± 0.08 < 0.1 < 0.1 -
Z+jets < 1 - < 0.01 -
γ+jets 856 ± 28 37 ± 7 107 ± 11 6.4 ± 1.6
VV < 1 - - -
Vγ 131 ± 4 5.0 ± 0.9 12.6 ± 1.3 1.13 ± 0.27
VVV < 0.1 < 0.01 - -
tt̄ 1.28 ± 0.04 - 0.57 ± 0.06 0.28 ± 0.18
t+X < 1 - < 0.1 -
tt̄+X 9 ± 6 0.6 ± 0.5 7 ± 5 0.8 ± 0.6
V h < 0.001 - < 0.01 -
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Full run 2 search with boosted hadronic W/Z/h signatures
arXiv:2108.07586
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Searches for EWK-inos and higgsinos with leptons and jets
arXiv:2204.13072
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Searches for EWK-inos and higgsinos with leptons and jets
arXiv:2204.13072

Region njets n
b-tag
jets

S(Emiss
T

) m`` mX mT2 ∆RX p
j1
T

[GeV] [GeV] [GeV] [GeV]

SR-High-EWK ≥ 2 ≤ 1 (18, 21,∞) 71–111 60 < m j j < 110 > 80 ∆Rj j ∈ (0, 0.8, 1.6) −

VR-High-Sideband-EWK ≥ 2 ≤ 1 > 18 71–111 20 < m j j < 60 ∪ m j j > 110 > 80 ∆Rj j < 1.6 −

VR-High-R-EWK ≥ 2 ≤ 1 > 18 71–111 m j j > 20 > 80 ∆R j j > 1.6 −

SR-1J-High-EWK 1 ≤ 1 > 12 71–111 60 < m j1 < 110 > 80 − −

VR-1J-High-Sideband-EWK 1 ≤ 1 > 12 71–111 20 < m j1 < 60 ∪ m j1 > 110 > 80 − −

SR-``bb-EWK ≥ 2 ≥ 2 > 18 71–111 60 < mbb < 150 > 80 − −

VR-``bb-EWK ≥ 2 ≥ 2 12–18 71–111 60 < mbb < 150 > 80 − −

SR-Int-EWK ≥ 2 0 (12, 15, 18) 81–101 60 < m j j < 110 > 80 − > 60
VR-Int-EWK ≥ 2 0 12–18 81–101 60 < m j j < 110 > 80 − < 60
CR-VZ-EWK ≥ 2 0 12–18 81–101 20 < m j j < 60 ∪ m j j > 110 > 80 − −

CR-tt-EWK ≥ 2 ≥ 1 9–12 81–101 m j j > 20 > 80 − > 60

SR-High_16a-EWK SR-High_8a-EWK SR-1J-High-EWK SR-``bb-EWK

Observed events 4 0 1 0

Total exp. bkg. events 3.9± 0.7 2.00± 0.23 0.85± 0.34 0.58± 0.20

Diboson events 3.2± 0.6 1.86± 0.22 0.80± 0.31 0.13± 0.03
Top events 0.00+0.01

−0.00 0.0± 0.0 0.03+0.04
−0.03 0.05+0.08

−0.05
Z/γ∗ + jets events 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Other events 0.7± 0.4 0.15± 0.07 0.02+0.04

−0.02 0.39± 0.16

SR-High_16b-EWK SR-High_8b-EWK

Observed events 3 0

Total exp. bkg. events 3.4± 0.9 2.00± 0.33

Diboson events 2.5± 0.6 1.94± 0.33
Top events 0.0± 0.0 0.0± 0.0
Z/γ∗ + jets events 0.0± 0.0 0.0± 0.0
Other events 0.9± 0.7 0.06± 0.04
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Searches for EWK-inos and higgsinos with leptons and jets
arXiv:2204.13072

Region njets n
b-tag
jets

S(Emiss
T

) m`` mX mT2 ∆RX ∆φ(p``
T
, ~pmiss

T
)

[GeV] [GeV] [GeV]

SR-Low-EWK 2 0 (6, 9, 12) 81–101 60 < m j j < 110 > 80 ∆R`` < 1 −

VR-Low-EWK 2 0 6–12 81–101 60 < m j j < 110 > 80 1 < ∆R`` < 1.4 −

SR-Low-2-EWK 2 0 6–9 81–101 60 < m j j < 110 < 80 ∆R`` < 1.6 < 0.6
VR-Low-2-EWK 2 0 6–9 81–101 20 < m j j < 60 ∪ m j j > 110 < 80 ∆R`` < 1.6 < 0.6
CR-Z-EWK 2 0 6–9 81–101 20 < m j j < 60 ∪ m j j > 110 > 80 − −

Region njets n
b-tag
jets

S(Emiss
T

) m`` mT2 p
j1
T

∆φ(p j1
T
, ~pmiss

T
)

[GeV] [GeV] [GeV]

SR-OffShell-EWK ≥ 2 0 > 9 (12, 40, 71) > 100 > 100 > 2
VR-OffShell-EWK ≥ 2 0 > 9 12–71 80–100 > 100 > 2
CR-DY-EWK ≥ 2 0 6–9 12–71 > 100 − −

SR-Int_a-EWK SR-Low_a-EWK SR-Low-2-EWK SR-OffShell_a-EWK

Observed events 24 10 8 6

Total exp. bkg. events 22.8± 3.5 12.8± 3.4 9± 4 9.2± 1.7

Diboson events 16.5± 1.7 7.3± 1.3 4.0± 2.1 4.9± 1.3
Top events 4± 4 0.06+0.14

−0.06 1.0+1.2
−1.0 1.4± 0.7

Z/γ∗ + jets events 2.1± 0.7 3.7± 3.3 4± 4 1.2± 1.2
Other events 0.44± 0.13 1.7± 0.4 0.58± 0.3 1.6± 0.4

SR-Int_b-EWK SR-Low_b-EWK SR-OffShell_b-EWK

Observed events 14 8 15

Total exp. bkg. events 10.1± 1.0 10.5± 2.5 12.5± 1.9

Diboson events 9.2± 1.0 8.6± 1.2 6.1± 1.5
Top events 0.22± 0.13 0.0± 0.0 2.8± 1.4
Z/γ∗ + jets events 0.51± 0.31 1.3+2.2

−1.3 3.1± 1.4
Other events 0.19± 0.08 0.70± 0.11 0.54± 0.24
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Searches for charginos with multilepton signatures
arXiv:2209.13935

Control region (CR) CR-VV CR-top

E
miss
T significance > 8

mT2 [GeV] > 50
nnon-b-tagged jets = 0

Leptons flavour DF SF DF SF
nb-tagged jets = 0 = 0 = 1 = 1
BDT-other - < 0.01 - < 0.01
BDT-signal ∈ (0.2, 0.65] ∈ (0.2, 0.65] ∈ (0.5, 0.7] ∈ (0.7, 0.75]
BDT-VV > 0.2 > 0.2 - -
BDT-top < 0.1 < 0.1 - -

Validation region (VR) VR-VV-DF VR-VV-SF VR-top-DF VR-top-SF VR-top0J-DF VR-top0J-SF

E
miss
T significance > 8

mT2 [GeV] > 50
nnon-b-tagged jets = 0

nb-tagged jets = 0 = 0 = 1 = 1 = 0 = 0
BDT-other - < 0.01 - < 0.01 - < 0.01
BDT-signal ∈ (0.65, 0.81] ∈ (0.65, 0.77] ∈ (0.7, 1] ∈ (0.75, 1] ∈ (0.5, 0.81] ∈ (0.5, 0.77]
BDT-VV > 0.2 > 0.2 - - < 0.15 < 0.15
BDT-top < 0.1 < 0.1 - - - -
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Searches for charginos with multilepton signatures
arXiv:2209.13935

Signal region (SR) SR-DF SR-SF

nb-tagged jets = 0
nnon-b-tagged jets = 0

E
miss
T significance >8

mT2 [GeV] >50
BDT-other < 0.01

Binned SRs

BDT-signal

∈(0.81,0.8125] ∈(0.77,0.775]
∈(0.8125,0.815] ∈(0.775,0.78]
∈(0.815,0.8175] ∈(0.78,0.785]
∈(0.8175,0.82] ∈(0.785,0.79]
∈(0.82,0.8225] ∈(0.79,0.795]
∈(0.8225,0.825] ∈(0.795,0.80]
∈(0.825,0.8275] ∈(0.80,0.81]
∈(0.8275,0.83] ∈(0.81,1]
∈(0.83,0.8325]
∈(0.8325,0.835]
∈(0.835,0.8375]
∈(0.8375,0.84]
∈(0.84,0.845]
∈(0.845,0.85]
∈(0.85,0.86]
∈(0.86,1]

Inclusive SRs

BDT-signal

∈(0.81,1] ∈(0.77,1]
∈(0.81,1]
∈(0.82,1]
∈(0.83,1]
∈(0.84,1]
∈(0.85,1]

∈(0.77,1]
∈(0.78,1]
∈(0.79,1]
∈(0.80,1]
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Searches for charginos with multilepton signatures
arXiv:2209.13935
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Searches for charginos with multilepton signatures
arXiv:2209.13935
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Wh search in 2b+2q final states (0`bb): 36 fb−1

arXiv:1812.09432 (Dec 2018)

Introduction

I All-hadronic final state
• ‰̃±1 ‰̃0

2 æ Wh‰̃0
1‰̃0

1 æ qq̄bb̄+ Emiss
T

• 2 b-jets + 2 non-b-jets + Emiss
T

• Targeting the high-m
‰̃±2 ,‰̃0

2
region

I Using 36.1 fb≠1 2015 + 2016 data
I Resolved final state

• Studies of boosted topology did not
show competitive performance

16

(a) One lepton and two b-jets channel (b) One lepton and two photons channel
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(c) Same-sign dilepton channel
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(d) Combination

Fig. 8 Observed (solid line) and expected (dashed line) 95% CL exclusion regions in the mass plane of m�̃0
1

vs. m
�̃0

2,�̃±
1

in the simplified model. The combination in (d) is obtained using the result from the ATLAS three-lepton search [21] in
addition to the three channels reported in this paper. The dotted lines around the observed limit represent the results obtained
when changing the nominal signal cross section up or down by the ±1�SUSY

theory theoretical uncertainty. The solid band around
the expected limit shows the ±1�exp uncertainty band where all uncertainties, except those on the signal cross sections, are
considered.

single non-negative normalisation parameter is used to
describe the signal model in all channels.

Systematic uncertainties on the signal expectations
stemming from detector e↵ects are included in the fit
in the same way as for the backgrounds. Theoreti-
cal systematic uncertainties on the signal cross section
described in Sect. 3 are not included directly in the
fit. In all resulting exclusions the dashed (black) and

solid (red) lines show the 95% CL expected and ob-
served limits respectively, including all uncertainties ex-
cept for the theoretical signal cross-section uncertainty.
The (yellow) bands around the expected limit show the
±1�exp expectations. The dotted ±1�SUSY

theory (red) lines
around the observed limit represent the results obtained
when changing the nominal signal cross section up or
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Wh search in 2b+2q final states (0`bb): 36 fb−1

arXiv:1812.09432 (Dec 2018)

Introduction

I All-hadronic final state
• ‰̃±1 ‰̃0

2 æ Wh‰̃0
1‰̃0

1 æ qq̄bb̄+ Emiss
T

• 2 b-jets + 2 non-b-jets + Emiss
T

• Targeting the high-m
‰̃±2 ,‰̃0

2
region

I Using 36.1 fb≠1 2015 + 2016 data
I Resolved final state

• Studies of boosted topology did not
show competitive performance

16

(a) One lepton and two b-jets channel (b) One lepton and two photons channel
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(c) Same-sign dilepton channel
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Fig. 8 Observed (solid line) and expected (dashed line) 95% CL exclusion regions in the mass plane of m�̃0
1

vs. m
�̃0

2,�̃±
1

in the simplified model. The combination in (d) is obtained using the result from the ATLAS three-lepton search [21] in
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Recursive Jigsaw Reconstruction (RJR) for SUSY at 13 TeV
ATLAS 36 fb−1 paper (arXiv:1806.02293) , ATLAS 139 fb−1 paper (arXiv:1806.02293) , and RJR
paper (arXiv:1607.08307)
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Figure 2: (a) Inclusive strong sparticle production decay tree. Two sparticles (Pa and Pb) are non-resonantly pair-
produced with each decaying to one or more visible particles (Va and Vb) which are reconstructed in the detector, and
two systems of invisble particles (Ia and Ib) whose four-momenta are only partially constrained. (b) An additional
level of decays can be added to the left tree when requiring more than two visible objects. This tree is particularly
useful for the search for gluino pair-production described in the text. (c) Strong sparticle production with ISR decay
tree for use with small mass-splitting spectra. A signal sparticle system S decaying to a set of visible momenta V
and invisible momentum I recoils o↵ of a jet radiation system ISR.

In searches for strong production of sparticles in R-parity conserving models, one can impose the decay267

tree shown in Figure 2(a). Each event is analyzed as if two sparticles (the intermediate states Pa and Pb)268

were produced and then decayed to the particles observed in our detector (the collections Va and Vb).269

The benchmark signal models probed in this search give rise to signal events with at least two weakly-270

interacting particles associated with two systems of particles (Ia and Ib), the respective children of the271

initially produced sparticles.272

This decay tree includes several kinematic and combinatoric unknowns. In the final state with no leptons,273

the objects observed in the detector are exclusively jets and one must decide how to partition these jets274

into the two groups Va and Vb in order to calculate the observables associated with the decay tree. In this275

case, the grouping that minimizes the masses of the four-vector sum of group constituents is chosen.276

More explicitly, the collection of reconstructed jet four-vectors, V ⌘ {pi} and their four-vector sum pV277

are considered. Each of the four-momenta is evaluated in the rest-frame of pV (V-frame) and di↵erent278

partitionings of these jets Vi = {p1, · · · , pNi} are considered such that Va
T

Vb = 0 and Va
S

Vb = V .279

For each partition, the sum of four-vectors p V
Vi
=
PNi

j p V
j is calculated and the combination chosen that280

maximizes the momenta of the two groups, |~p V
Va
| + |~p V

Vb
|. The axis that this partition implicitly defines281

in the V rest-frame is equivalent to the thrust-axis of the jets, and the masses MVi =
q

p2
Vi

have, in a282

sense, been simultaneously minimized. When analyzing the entire event, these two groups are called “jet283

hemispheres.”284

The remaining unknowns in the event are associated with the two collections of weakly interacting285

particles: their masses, longitudinal momenta and information as how the two groups independently286

contribute to the Emiss
T . The RJR algorithm organizes these unknowns into the groups of necessary in-287

formation for determining the relative velocities of the reference frames in the decay tree, or the boosts288

that relate them to each other. The algorithm then proceeds from the first known reference frame, the lab289

frame, and traverses the decay tree through each intermediate frame. When unknowns are encountered290
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produced with each decaying to one or more visible particles (Va and Vb) which are reconstructed in the detector, and
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level of decays can be added to the left tree when requiring more than two visible objects. This tree is particularly
useful for the search for gluino pair-production described in the text. (c) Strong sparticle production with ISR decay
tree for use with small mass-splitting spectra. A signal sparticle system S decaying to a set of visible momenta V
and invisible momentum I recoils o↵ of a jet radiation system ISR.
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Recursive Jigsaw Reconstruction (RJR) for SUSY at 13 TeV
ATLAS 36 fb−1 paper (arXiv:1806.02293) , ATLAS 139 fb−1 paper (arXiv:1806.02293) , and RJR
paper (arXiv:1607.08307)
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two systems of invisble particles (Ia and Ib) whose four-momenta are only partially constrained. (b) An additional
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tree for use with small mass-splitting spectra. A signal sparticle system S decaying to a set of visible momenta V
and invisible momentum I recoils o↵ of a jet radiation system ISR.
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Figure 2: (a) Inclusive strong sparticle production decay tree. Two sparticles (Pa and Pb) are non-resonantly pair-
produced with each decaying to one or more visible particles (Va and Vb) which are reconstructed in the detector, and
two systems of invisble particles (Ia and Ib) whose four-momenta are only partially constrained. (b) An additional
level of decays can be added to the left tree when requiring more than two visible objects. This tree is particularly
useful for the search for gluino pair-production described in the text. (c) Strong sparticle production with ISR decay
tree for use with small mass-splitting spectra. A signal sparticle system S decaying to a set of visible momenta V
and invisible momentum I recoils o↵ of a jet radiation system ISR.
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Follow-up of recursive jigsaw analysis with 139 fb−1

Phys. Rev. D 98 (2018) 092012 (arXiv:1806.02293) → ATLAS-CONF-2019-020

SR-low SR-ISR

Observed events 51 30

Fitted SM events 46± 5 23.0± 2.2

WZ 38± 5 19.5± 2.0

ZZ 4.9± 0.6 0.38± 0.07

Others 1.3± 0.7 1.2± 0.7

Top-quark like 0.03
+0.18
−0.03 1.9± 0.8

Fake/non-prompt 1.6± 1.3 0.01
+0.05
−0.01

Relevant signal region definitions
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Emulated reconstruction techniques map onto the RJR observables with
very high fidelity
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Follow-up of recursive jigsaw analysis with 139 fb−1
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Some ISR observables not as exact
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