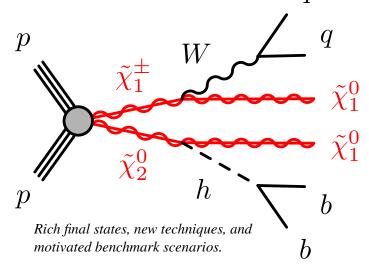
ATLAS searches for supersymmetry with prompt particles SILAFAE 2022

David W. Miller on behalf of the ATLAS Collaboration

Enrico Fermi Institute



November 17, 2022

Pushing the boundaries of electroweak processes and complex final states *Q*

Supersymmetry (SUSY) Searches and Strategies

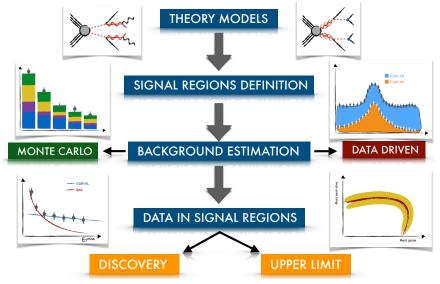


Image Credit: Peter Tornambè

D. W. Miller (EFI, Chicago; ATLAS)

Supersymmetry (SUSY) Searches and Strategies

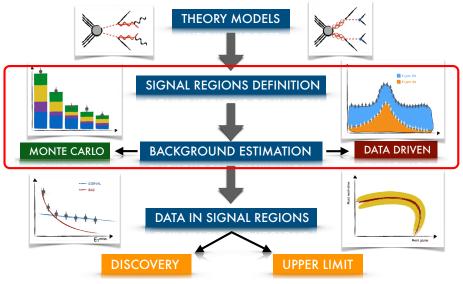
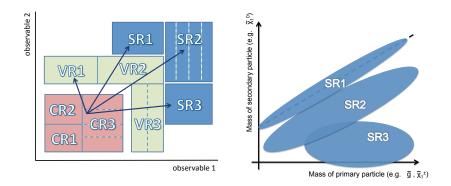



Image Credit: Peter Tornambè

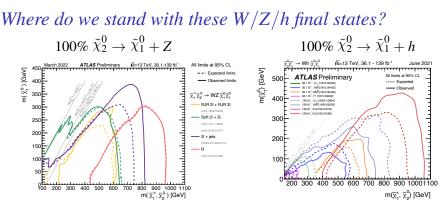
D. W. Miller (EFI, Chicago; ATLAS)

Search strategies employed (briefly)

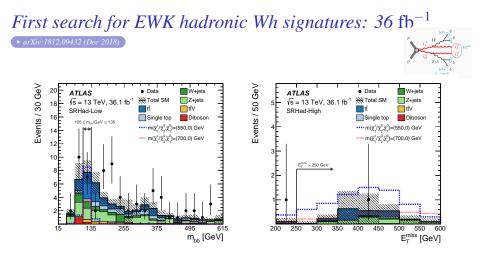
- Design signal regions to target specific regions of parameter space
- Use dedicated search techniques, in particular for hadronic signatures
- Tailor observables to target corners dominated by initial state radiation

ATLAS search highlights covered in this talk

See also: Risa Ushioda's long-lived particle talk (Mon@15:45)

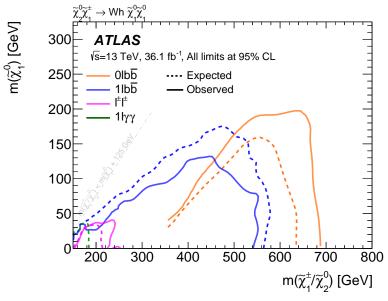

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Pron

Comprehensive W/Z/h search program in ATLAS

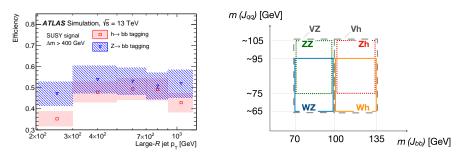

qpWW $\tilde{\chi}_1^0$ $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$ $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$ pp \boldsymbol{p} bpqWWW $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ \tilde{Y}_1^0 $\tilde{\chi}_1^0$ $\tilde{\chi}_2^0$ $\tilde{\chi}_2^0$ \mathbf{Z} Zp

ATLAS Prompt SUSY Searches - SILAFAE 2022

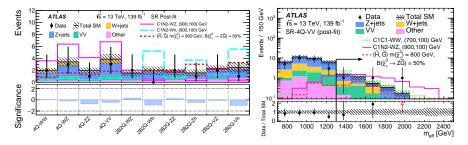
& more!


- Hadronic searches are driving sensitivity at high-mass, regardless of $\tilde{\chi}_2^0$ decay (*h* or *Z*)
- Leptonic searches and $E_{\rm T}^{\rm miss}$ drive sensitivity for compressed regions
 - 3 leptons and soft 2 leptons for $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + Z$, 1 lepton for $\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + h$
- Higgs and *W*/*Z* masses often used to construct control (CR), validation (VR), and signal regions (SR)
 - Excellent jet reconstruction and boosted object tagging needed

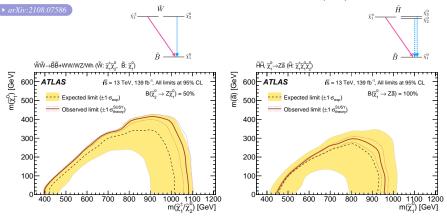
- Tight selections on moderately boosted Higgs and W bosons
- $E_{\rm T}^{\rm miss}$ (triggers), lepton veto, large $M_{\rm eff}$ required for all signal regions
- Higgs and W masses used to construct CR, VR, and SR definitions


First search for EWK hadronic Wh signatures: 36 fb^{-1}

▶ arXiv:1812.09432 (Dec 2018)


D. W. Miller (EFI, Chicago; ATLAS)

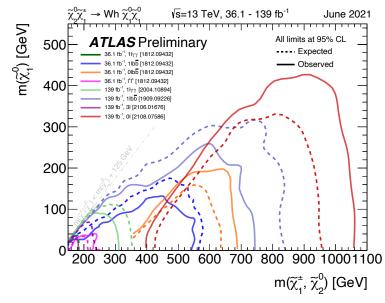
Full run 2 search with boosted hadronic W/Z/h signatures • arXiv:2108.07586


- Boosted boson tagging for $W(Z) \rightarrow q\bar{q}$ & $Z(h) \rightarrow b\bar{b}$
- Fat jets, D_2 , & N_{track} , with loosened N_{track} cut: $N_{\text{track}} \le 32$ (34) for W(Z) tagging compared to standard ATLAS tagging
- Z → bb̄ and h → bb̄-tagging requires two b-jets inside the fat jet and mass peak consistent with Z(h) bosons.

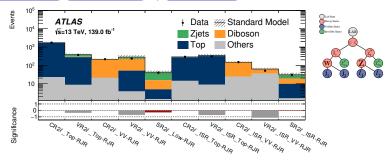
Full run 2 search with boosted hadronic W/Z/h signatures • arXiv:2108.07586

- No signs of anomalous excesses or deficits across 10 signal regions
- Distributions and event yields for key observables such as $M_{\rm eff}$ and $m_{\rm T2}$

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022

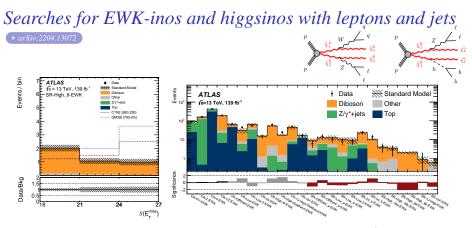

• Dramatic increase in sensitivity: \sim 700 GeV $\rightarrow \sim$ 1 TeV exclusions!

• 50% branching fraction for $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + Z/h$ (left), all hadronic search relatively insensitive to nature of $\tilde{\chi}_2^0$ decay

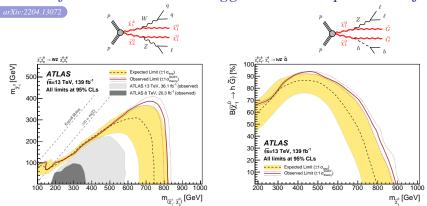

• First interpretation of EWK signatures with an axino (*ã*) LSP

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022

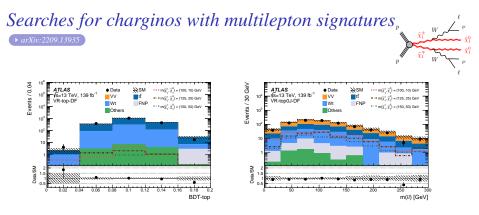
Search for EWK SUSY using Wh signatures: 139 fb⁻¹



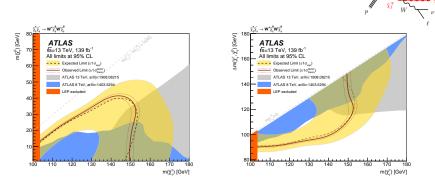
> Phys. Rev. D 98 (2018) 092012 (+ (arXiv:1806.02293) ___ (+ arXiv:2204.13072



- Recursive jigsaw reconstruction (RJR) decomposes events according to a particular decay topology assumption and partitions kinematics to estimate missing degrees of freedom
- Analysis aimed at checking previously observed excesses of 2.0σ and 1.4σ from 36 fb^{-1} persist with more data.
 - The same 36 fb⁻¹ 13 TeV analysis also included 3 ℓ regions which had 3.0 σ and 2.1 σ excesses above the Standard Model expectations, which were not observed with more data (see Phys. Rev. D 101 (2020) 072001 [arXiv:1912.08479])


D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches - SILAFAE 2022

- 2 leptons with opposite-sign charge, at least 2 jets, and $E_{\rm T}^{\rm miss}$
- MC simulations normalized from control regions
- Fake or non-prompt leptons estimated using data-driven matrix method
- Observe a deficit in SR for high NLSP-LSP mass splitting



- Observations agree with predictions from MC simulations
- Observe exclusions for chargino/neutralino mass below 820 GeV
- Can exclude the mass of a higgsino Next-to-LSP below 900 GeV

- Direct chargino production with 2 opposite charge leptons $+ E_{T}^{miss}$
- Extending sensitivity to small mass splittings $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim m_W$
 - Signal similar to SM WW, see WW unfolding analysis [arXiv:2206.15231]
- Same-flavour (SF) and different-flavour (DF) lepton signal regions
- SRs use binned BDT output for DF and SF events

Searches for charginos with multilepton signatures • arXiv:2209.13935

• Significantly extend the limits in low to moderate mass difference region (up to 150 GeV) between chargino and neutralino

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022

Summary and conclusions

- Electroweak SUSY searches with sensitive hadronic and leptonic final state observables are pushing sensitivities to the TeV scale!
 - Fully-hadronic searches important even for electroweak searches
- Significant increases in sensitivity for Electroweak / Higgsino searches with the full Run 2 dataset
 - Extending the interpretations even farther by varying branching fractions and introducing additional models, such as the axino LSP
- Search strategies are successful, but also need to move into more complex models and phase space
 - Taking an inclusive perspective where possible, and investigating additional model parameters to vary in order to assess and eventually expand sensitivity

Thank you!

Additional Material

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022

Common observables used in 13 TeV searches for SUSY

For the 13 TeV ATLAS searches, we utilize each of these classes:

- Missing energy-type:
 - Missing transverse momentum: $E_{\rm T}^{\rm miss}$ and $\vec{p}_{\rm T}^{\rm miss}$
 - Missing transverse momentum significance: $E_{T}^{\text{miss}}/\sqrt{H_{T}}$
 - **RJigsaw** *H*-scale for 1 visible, 1 invisible state: $H_{1,1}^{PP}$
- Energy scale-type:

• Effective mass:
$$M_{\rm eff} = \sum_{\rm jets} p_{\rm T} + \sum_{\rm leptons} + E_{\rm T}^{\rm miss}$$
 (also considering only first 4 jets)

- Scalar sum of visible momenta: $H_{\rm T}$,
- Transverse mass: $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}} (1 \cos(\Delta \phi (\vec{p_{\rm T}}^{\rm miss}, \ell)))$

(b-quarks can also replace the lepton)

- **RJigsaw** *H*-scale: $H_{2,1}^{PP}$, $H_{4,1}^{PP}$
- **RJigsaw ISR** p_{T} scale: $|p_{TS}^{ISR}|$
- Energy structure-type:
 - Jet multiplicity: $N_{\text{iet}}, N_{b-\text{iet}}$
 - Total jet mass: $M_{\rm J}^{\Sigma} = \sum m^{\rm jet}$
 - Angular distributions: $\Delta \phi_{\min}^{4j} = \min(|\phi_{\text{anv-iet}} \vec{p_T}^{\text{miss}}|) > 0.4$
 - Aplanarity: $A = (3/2)\lambda_3$
 - **OCD** $E_{\rm T}^{\rm miss}$ alignment: $\Delta_{\rm OCD}$

(also considering only first 4 large-radius jets)

(for all 0*l* selections)

(Similar to E_{T}^{miss}

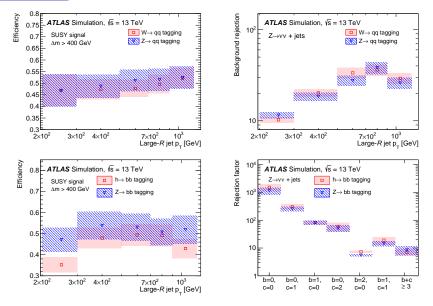
(Similar to $M_{\rm eff}$)

(sum pT of ISR jets

(signed asymmetry between E_{T}^{miss} and jet azimuthal directions)

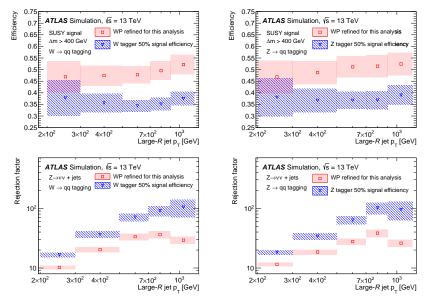
Model	Production	Final states	SRs simultaneously fitted	Branching ratio
$(\widetilde{W},\widetilde{B})$	$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$	WW, WZ, Wh	4Q-VV, 2B2Q-WZ, 2B2Q-Wh	$ \begin{aligned} & \mathcal{B}(\widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^0) = 1 \\ & \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) \text{ scanned} \end{aligned} $
$(\widetilde{H},\widetilde{B})$	$ \begin{aligned} &\widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0, \\ &\widetilde{\chi}_1^{\pm}\widetilde{\chi}_3^0, \widetilde{\chi}_2^0\widetilde{\chi}_3^0 \end{aligned} $	WW, WZ, Wh, ZZ, Zh, hh	4Q-VV, 2B2Q-VZ, 2B2Q-Vh	$ \begin{array}{l} \mathcal{B}(\widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^0) = 1 \\ \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) \text{ scanned} \\ \mathcal{B}(\widetilde{\chi}_3^0 \to Z \widetilde{\chi}_1^0) = 1 - \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) \end{array} $
$(\widetilde{W},\widetilde{H})$	$\widetilde{\chi}_2^{\pm}\widetilde{\chi}_2^{\mp}, \widetilde{\chi}_2^{\pm}\widetilde{\chi}_3^0$	WW, WZ, Wh, ZZ, Zh, hh	4Q-VV, 2B2Q-VZ, 2B2Q-Vh	Determined from $(M_2, \mu, \tan \beta)$
$(\widetilde{H},\widetilde{W})$	$ \begin{array}{c} \widetilde{\chi}_2^{\pm} \widetilde{\chi}_2^{\mp}, \widetilde{\chi}_2^{\pm} \widetilde{\chi}_2^0, \\ \widetilde{\chi}_2^{\pm} \widetilde{\chi}_3^0, \widetilde{\chi}_2^0 \widetilde{\chi}_3^0 \end{array} $	WW, WZ, Wh, ZZ, Zh, hh	4Q-VV, 2B2Q-VZ, 2B2Q-Vh	Determined from $(M_2, \mu, \tan \beta)$
$(\widetilde{H},\widetilde{G})$	$ \begin{array}{c} \widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^0, \\ \widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0, \widetilde{\chi}_1^0\widetilde{\chi}_2^0 \end{array} $	ZZ, Zh, hh	4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh	$\mathcal{B}(\tilde{\chi}^0_1 \to Z\tilde{G})$ scanned
$(\widetilde{H}, \widetilde{a})$	$ \begin{array}{c} \widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{0}, \\ \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{0}, \widetilde{\chi}_1^{0} \widetilde{\chi}_2^{0} \end{array} $	ZZ, Zh, hh	4Q-ZZ, 2B2Q-ZZ, 2B2Q-Zh	$\mathcal{B}(\tilde{\chi}^0_1 \to Z\tilde{a})$ scanned
$(\widetilde{W},\widetilde{B})$ simple	olified models: ($\widetilde{W}, \widetilde{B}$)-SIM		
C1C1-WW	$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}$	WW	4Q-WW	$\mathcal{B}(\widetilde{\chi}_1^\pm \to W\widetilde{\chi}_1^0) = 1$
C1N2-WZ	$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$	WZ	4Q-WZ, 2B2Q-WZ	$\mathcal{B}(\widetilde{\chi}_1^\pm \to W \widetilde{\chi}_1^0) = \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) = 1$
C1N2-Wh	$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$	Wh	2B2Q-Wh	$\mathcal{B}(\widetilde{\chi}_1^\pm \to W \widetilde{\chi}_1^0) = \mathcal{B}(\widetilde{\chi}_2^0 \to h \widetilde{\chi}_1^0) = 1$

D. W. Miller (EFI, Chicago; ATLAS)

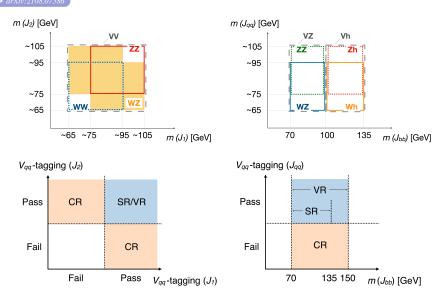

	6	R(CR0L)	VP(CR)1L	VP	CR)1Y	1
	4Q 3	2B2Q	4Q	2B2Q	4Q	2B2Q	VRTTX
nLarge-R jets		≥ 2	2	2	2	= 1	
n _{lepton}		= 0	=	= 1	=	= 0	= 3
$p_{\rm T}(\ell_1)$ [GeV]		-	>	30		-	> 30
n _{photon}		-		-	= 1		-
$n(V_{qq})$	= 2 (= 1)	= 1 (= 0)	= 2 (= 1)	= 1 (= 0)	= 2 (= 1)	= 1 (= 0)	-
$n(!V_{qq})$	= 0 (= 1)	= 0 (= 1)	= 0 (= 1)	= 0 (= 1)	= 0 (= 1)	= 0 (= 1)	-
$n(J_{bb})$	= 0	= 1	= 0	= 1	= 0	= 1	= 1
$m(J_{bb})$ [GeV]	-	$\in [70, 135 \ (150)]$	-	\in [70, 150]	-	\in [70, 150]	-
$n_{b-jet}^{unmatched}$		= 0	= 0		= 0		-
n _{b-jet}	≤ 1	-	= 0	-	≤ 1	-	-
$E_{\rm T}^{\rm miss}$ [GeV]	> 300	> 200	> 50		<	-	
$p_{\rm T}(W)$ [GeV]		-	> 200		-		-
$p_{\rm T}(\gamma)$ [GeV]	-		-		> 200		-
$m_{\rm eff}$ [GeV]	> 1300	> 1000 (> 900)	> 1000	> 900	> 1000	> 900	-
$\min \Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}}, j)$		> 1.0	> 1.0		> 1.0		-
$m_{\rm T2} [{\rm GeV}]$	-	> 250	-	> 250	-	> 250	-

D. W. Miller (EFI, Chicago; ATLAS)

						Region	CR1L-4Q	VR1L-4Q	CR1L-2B2Q	VR1L-2B2Q
						Observed	439	13	96	5
						Post-fit	439 ± 21	22.0 ± 3.4	96 ± 10	7.8 ± 1.5
						W+jets	325 ± 16	13.4 ± 2.2	48 ± 5	3.4 ± 0.7
						Z+jets	4.45 ± 0.21	0.198 ± 0.035	0.58 ± 0.06	0.044 ± 0.012
						γ +jets	< 1	-	0.57 ± 0.06	0.22 ± 0.10
						VV	65.4 ± 3.1	4.1 ± 0.8	6.9 ± 0.7	0.55 ± 0.15
						$V\gamma$	< 1	-	< 0.1	-
						VVV	1.3 ± 0.6	0.52 ± 0.28	0.14 ± 0.08	0.09 ± 0.05
						tī	30.4 ± 1.5	2.7 ± 0.4	24.0 ± 2.5	1.8 ± 0.4
						t+X	11.0 ± 0.5	0.91 ± 0.21	13.2 ± 1.4	1.27 ± 0.34
						$t\bar{t}+X$	1.5 ± 1.2	0.16 ± 0.12	1.5 ± 1.1	0.4 ± 0.4
	(11	(7.)	<i>(</i> 1·)	(7)	(1)	Vh	< 0.1	< 0.001	0.69 ± 0.07	0.046 ± 0.009
	$n(W_{qq})$	$n(Z_{qq})$	$n(V_{qq})$	$n(Z_{bb})$	$n(h_{bb})$	Region	CR1Y-4Q	VR1Y-4Q	CR1Y-2B2Q	VR1Y-2B2Q
40-WW	2				0					
· •	= 2	-	= 2	= 0	= 0	Observed	1001	38	127	14
4Q-WZ	= 2 ≥ 1	≥ 1	= 2	= 0	= 0	Observed Post-fit	1001 1001 ± 32	38 43 ± 8	127 127 ± 11	14 8.6 ± 2.0
4Q-WZ 4Q-ZZ		≥ 1 = 2	= 2 = 2	= 0 = 0		Post-fit	1001 ± 32	43 ± 8	127 ± 11	
4Q-WZ	≥ 1		= 2	= 0	= 0	Post-fit W+jets	1001 ± 32 2.59 ± 0.08			8.6 ± 2.0
4Q-WZ 4Q-ZZ 4Q-VV	≥ 1 - -	= 2	= 2 = 2 = 2	= 0 = 0 = 0	= 0 = 0 = 0	Post-fit W+jets Z+jets	1001 ± 32	43 ± 8 < 0.1	127 ± 11 < 0.1	8.6 ± 2.0
4Q-WZ 4Q-ZZ 4Q-VV 2B2Q-WZ	≥ 1 - - = 1	= 2	= 2 = 2 = 2 = 1	= 0 = 0 = 0 = 1	= 0 = 0 = 0 = 0	Post-fit W+jets	1001 ± 32 2.59 ± 0.08 < 1	43 ± 8 < 0.1	127 ± 11 < 0.1 < 0.01	8.6 ± 2.0
4Q-WZ 4Q-ZZ 4Q-VV	≥ 1 - -	= 2	= 2 = 2 = 2	= 0 = 0 = 0	= 0 = 0 = 0	Post-fit W+jets Z+jets y+jets	$\begin{array}{c} 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \end{array}$	43 ± 8 < 0.1 	127 ± 11 < 0.1 < 0.01 107 ± 11	8.6 ± 2.0
4Q-WZ 4Q-ZZ 4Q-VV 2B2Q-WZ	≥ 1 - - = 1	= 2	= 2 = 2 = 2 = 1	= 0 = 0 = 0 = 1	= 0 = 0 = 0 = 0	Post-fit W+jets Z+jets γ +jets VV	$\begin{array}{c} 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \end{array}$	43 ± 8 < 0.1 37 ± 7	127 ± 11 < 0.1 < 0.01 107 ± 11	8.6 ± 2.0
4Q-WZ 4Q-ZZ 4Q-VV 2B2Q-WZ 2B2Q-ZZ	≥ 1 - - = 1 -	= 2 = 1	= 2 = 2 = 2 = 1 = 1	= 0 = 0 = 0 = 1 = 1	= 0 = 0 = 0 = 0	Post-fit W +jets Z +jets γ +jets VV $V\gamma$ VVV	$\begin{array}{r} 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \\ < 0.1 \\ 1.28 \pm 0.04 \end{array}$	$ \begin{array}{r} 43 \pm 8 \\ < 0.1 \\ \hline 37 \pm 7 \\ \hline 5.0 \pm 0.9 \end{array} $	$\begin{array}{c} 127 \pm 11 \\ < 0.1 \\ < 0.01 \\ 107 \pm 11 \\ - \\ 12.6 \pm 1.3 \\ - \\ 0.57 \pm 0.06 \end{array}$	8.6 ± 2.0 6.4 ± 1.6
4Q-WZ 4Q-ZZ 4Q-VV 2B2Q-WZ 2B2Q-ZZ 2B2Q-ZH 2B2Q-Zh	≥ 1 - = 1 - = 1 -	= 2 = 1 = 1	$ \begin{array}{r} = 2 \\ = 2 \\ = 2 \\ = 1 \\ = 1 \\ = 1 \\ = 1 \\ \end{array} $	= 0 = 0 = 0 = 1 = 1 = 0 = 0		Post-fit W +jets Z +jets γ +jets VV $V\gamma$ VVV $t\bar{t}$ $t+X$	$\begin{array}{c} 1001\pm 32\\ \hline 2.59\pm 0.08\\ <1\\ 856\pm 28\\ <1\\ 131\pm 4\\ <0.1\\ 1.28\pm 0.04\\ <1\\ \end{array}$	$ \begin{array}{r} 43 \pm 8 \\ < 0.1 \\ . \\ 37 \pm 7 \\ . \\ 5.0 \pm 0.9 \\ < 0.01 \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ .$	$\begin{array}{c} 127 \pm 11 \\ < 0.1 \\ < 0.01 \\ 107 \pm 11 \\ - \\ 12.6 \pm 1.3 \\ - \\ 0.57 \pm 0.06 \\ < 0.1 \end{array}$	8.6 ± 2.0 $-$ 6.4 ± 1.6 $-$ 1.13 ± 0.27 0.28 ± 0.18 $-$
4Q-WZ 4Q-ZZ 4Q-VV 2B2Q-WZ 2B2Q-ZZ 2B2Q-Wh	≥ 1 - - = 1 = 1	= 2 = 1	= 2 = 2 = 2 = 1 = 1 = 1	= 0 = 0 = 0 = 1 = 1 = 0		Post-fit W +jets Z +jets γ +jets VV $V\gamma$ VVV	$\begin{array}{r} 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \\ < 0.1 \\ 1.28 \pm 0.04 \end{array}$	$ \begin{array}{r} 43 \pm 8 \\ < 0.1 \\ - \\ 37 \pm 7 \\ - \\ 5.0 \pm 0.9 \\ < 0.01 \end{array} $	$\begin{array}{c} 127 \pm 11 \\ < 0.1 \\ < 0.01 \\ 107 \pm 11 \\ - \\ 12.6 \pm 1.3 \\ - \\ 0.57 \pm 0.06 \end{array}$	8.6 ± 2.0

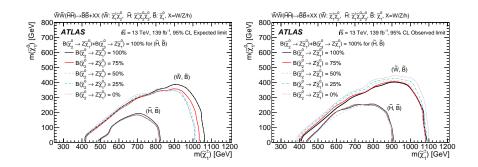

D. W. Miller (EFI, Chicago; ATLAS)

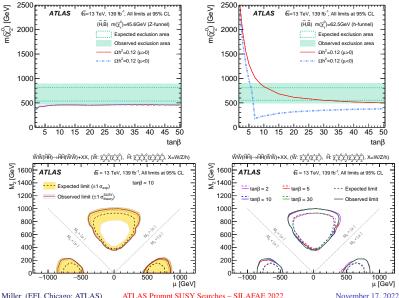
▶ arXiv:2108.07586



D. W. Miller (EFI, Chicago; ATLAS)

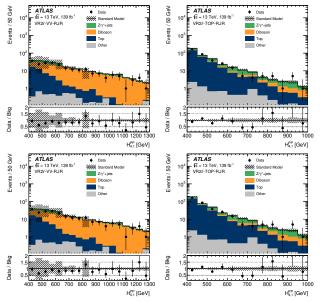
▶ arXiv:2108.07586




D. W. Miller (EFI, Chicago; ATLAS)

D. W. Miller (EFI, Chicago; ATLAS)

Full run 2 search with boosted hadronic W/Z/h signatures • arXiv:2108.07586



10/31

D. W. Miller (EFI, Chicago; ATLAS)

▶ arXiv:2204.13072

D. W. Miller (EFI, Chicago; ATLAS)

→ arXiv:2204.13072

Region	n _{jets}	n ^{b-tag} jets	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	<i>m_{ℓℓ}</i> [GeV]	<i>m_X</i> [GeV]		m _{T2} [GeV]	ΔR_X	<i>p</i> _T ^{<i>j</i>1} [GeV]
SR-High-EWK	> 2	< 1	(18, 21, ∞)	71-111	$60 < m_{ij} < 110$		> 80	$\Delta R_{ii} \in (0, 0.8, 1.6)$	-
VR-High-Sideband-EWK	≥ 2	≤ 1	> 18	71-111	$20 < m_{ii} < 60 \cup m_{ii} > 11$		> 80	$\Delta R_{ii} < 1.6$	-
VR-High-R-EWK	≥ 2	≤ 1	> 18	71-111	$m_{ii} > 20$		> 80	$\Delta R_{11} > 1.6$	-
SR-1J-High-EWK	1	≤ 1	> 12	71-111	$60 < m_{j_1} < 110$		> 80		-
VR-1J-High-Sideband-EWK	1	≤ 1	> 12	71-111	$20 < m_{j_1} < 60 \cup m_{j_1}$	> 110	> 80	-	-
SR- <i>ℓℓbb</i> -EWK	≥ 2	≥ 2	> 18	71-111	$60 < m_{bb} < 150$		> 80	-	-
VR- <i>ℓℓbb</i> -EWK	≥ 2	≥ 2	12-18	71-111	$60 < m_{bb} < 150$		> 80	-	-
SR-Int-EWK	≥ 2	0	(12, 15, 18)	81-101	$60 < m_{ii} < 110$		> 80	-	> 60
VR-Int-EWK	≥ 2	0	12-18	81-101	$60 < m_{jj} < 110$		> 80	-	< 60
CR-VZ-EWK	≥ 2	0	12-18	81 - 101	$20 < m_{jj} < 60 \cup m_{jj}$	> 110	> 80	-	-
CR-tt-EWK	≥ 2	≥ 1	9-12	81-101	$m_{jj} > 20$		> 80	-	> 60
	SR	-High_	_16a-EWK	SR-I	High_8a-EWK S	R-1J-1	High-E	WK SR- <i>ℓℓbb</i> -	EWK
Observed events		4			0		1	0	
Total exp. bkg. events		3.9	9±0.7		2.00 ± 0.23 0		85 ± 0.3	4 0.58 ±	0.20
Diboson events		3.2	2 ± 0.6		1.86 ± 0.22	0.8	30 ± 0.3	1 0.13 ±	0.03
Top events		0.00	$)^{+0.01}_{-0.00}$		0.0 ± 0.0	0.0	$3^{+0.04}_{-0.03}$	0.05^{+0}_{-0}	0.08
Z/γ^* + jets events			0.00 ± 0.00		0.0 ± 0.0		$.0 \pm 0.03$		
Other events			7 ± 0.4					0.39 ±	
Other events		0.	1 ± 0.4		0.13 ± 0.07		$02^{+0.04}_{-0.02}$	0.39 ±	0.10
	SR	-High_	16b-EWK	SR-I	High_8b-EWK				
Observed events		3	3		0				
Total exp. bkg. events 3.4 ± 0.9		4±0.9		2.00 ± 0.33					
Diboson events		2.5	5 ± 0.6		1.94 ± 0.33				
Top events		0.0	0 ± 0.0		0.0 ± 0.0				
Z/γ^* + jets events			$) \pm 0.0$		0.0 ± 0.0				
Other events			9 ± 0.7		0.06 ± 0.04				

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches - SILAFAE 2022

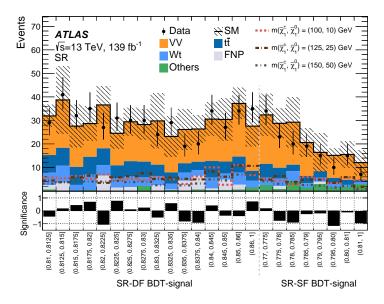
→ arXiv:2204.13072

Region	n _{jets}	n ^{b-tag} _{jets}	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	<i>m_{ℓℓ}</i> [GeV]		<i>m_X</i> [GeV]		m _{T2} [GeV]	ΔR_X	$\Delta \phi(p_{\rm T}^{\ell\ell},\vec{p}_{\rm T}^{\rm miss})$
SR-Low-EWK	2	0	(6, 9, 12)	81-101		$60 < m_{ii} < 110$	1	> 80	$\Delta R_{\ell\ell} < 1$	-
VR-Low-EWK	2	0	6-12	81-101		$60 < m_{ii} < 110$		> 80	$1 < \Delta R_{\ell\ell} <$	1.4 –
SR-Low-2-EWK	2	0	6-9	81-101		$60 < m_{jj} < 110$		< 80	$\Delta R_{\ell\ell} < 1.$	6 < 0.6
VR-Low-2-EWK	2	0	6-9	81-101	20 <	$m_{jj} < 60 \cup m_{jj}$	> 110	< 80	$\Delta R_{\ell \ell} < 1.$	6 < 0.6
CR-Z-EWK	2	0	6–9	81-101	20 <	$m_{jj} < 60 \cup m_{jj}$	> 110	> 80	-	-
Region		n _{jet}	s n ^{b-ta} jets	^g S(.	E ^{miss})	<i>m_{ℓℓ}</i> [GeV]		m _{T2} GeV]	<i>p</i> _T ^{<i>j</i>1} [GeV]	$\Delta \phi(p_{\rm T}^{j_1}, \vec{p}_{\rm T}^{\rm miss})$
SR-OffShell-	EWK	≥ 2	. 0		> 9	(12, 40, 71) >	· 100	> 100	> 2
VR-OffShell-	EWK	> 2	2 0	:	> 9	12-71	80	-100	> 100	> 2
CR-DY-EWK	2	≥ 2	0		5-9	12-71	>	- 100	-	-
		SF	R-Int_a-E	WK	SR-Lo	w_a-EWK	SR-Lo	w-2-EV	VK SR-C	offShell_a-EWK
Observed ever	nts		24		1	10		8		6
Total exp. bkg	. even	ts	22.8 ± 3	.5	12	$.8 \pm 3.4$		9 ± 4		9.2 ± 1.7
Diboson event	s		16.5 ± 1	.7		.3±1.3		.0 ± 2.1		4.9 ± 1.3
Top events			4 ± 4		0.0	$06^{+0.14}_{-0.06}$	1	$.0^{+1.2}_{-1.0}$		1.4 ± 0.7
Z/γ^* + jets even	ents		2.1 ± 0	.7		.7 ± 3.3		4 ± 4		1.2 ± 1.2
Other events			0.44 ± 0	.13	1	$.7 \pm 0.4$	0.:	58 ± 0.3	3	1.6 ± 0.4
		SF	R-Int_b-E	WK	SR-Lo	w_b-EWK			SR-C	offShell_b-EWK
Observed ever	nts		14			8				15
Total exp. bkg	. even	ts	10.1 ± 1	.0	10	.5 ± 2.5				12.5 ± 1.9
Diboson event	s		9.2 ± 1			.6±1.2				6.1 ± 1.5
Top events			0.22 ± 0	.13		$.0 \pm 0.0$				2.8 ± 1.4
Z/γ^* + jets even	ents		0.51 ± 0	.31	1	$.3^{+2.2}_{-1.3}$				3.1 ± 1.4
Other events			0.19 ± 0	.08		70 ± 0.11				0.54 ± 0.24

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SU

Searches for charginos with multilepton signatures • arXiv:2209.13935

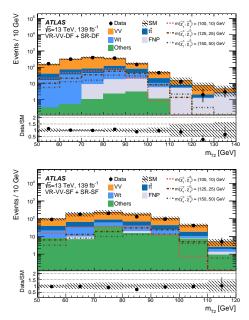
Control region (CR)		CR-VV			CR-top			
$ \begin{array}{c c} E_{\rm T}^{\rm miss} \text{ significance} \\ m_{\rm T2} \ [{\rm GeV}] \\ n_{\rm non-b-tagged \ jets} \end{array} $	> 8 > 50 = 0							
Leptons flavour		DF	SF		DF	SF		
$n_{b-\text{tagged jets}}$ BDT-other		= 0	= 0 < 0.01		= 1 < 0.01			
BDT-signal BDT-VV	$\in (0.2, 0.2, 0.2)$	0.65]	$\in (0.2, 0.65]$ > 0.2	∈ ($\in (0.7, 0.75]$			
BDT-top		0.1	< 0.1		-			
Validation region (VR)	VR-VV-DF	VR-VV-SF	VR-top-DF	VR-top-SF	VR-top0J-DF	VR-top0J-SF		
$E_{\rm T}^{\rm miss}$ significance $m_{\rm T2}$ [GeV] $n_{\rm non-b-tagged jets}$			>	> 8 50 = 0				
nb-tagged jets BDT-other BDT-signal BDT-VV BDT-top	$ \begin{array}{c} = 0 \\ \hline \\ \in (0.65, 0.81] \\ > 0.2 \\ < 0.1 \end{array} $	$= 0 < 0.01 \in (0.65, 0.77] > 0.2 < 0.1$	= 1 $\in (0.7, 1]$	= 1 < 0.01 $\in (0.75, 1]$	= 0 $\in (0.5, 0.81]$ < 0.15	$= 0 < 0.01 \in (0.5, 0.77] < 0.15 -$		


Searches for charginos with multilepton signatures

→ arXiv:2209.13935

Signal region (SR)	SR-DF		SR-SF
$n_{b-tagged jets}$ $n_{non-b-tagged jets}$ E_{T}^{miss} significance m_{T2} [GeV] BDT-other		= 0 = 0 >8 >50	< 0.01
Binned SRs			
BDT-signal	$\begin{array}{l} \in (0.81, 0.8125] \\ \in (0.8125, 0.815] \\ \in (0.815, 0.8175] \\ \in (0.8175, 0.82] \\ \in (0.8225, 0.8225] \\ \in (0.8225, 0.8225] \\ \in (0.8225, 0.8225] \\ \in (0.8225, 0.8235] \\ \in (0.8325, 0.8375] \\ \in (0.8335, 0.8375] \\ \in (0.8355, 0.84] \\ \in (0.845, 0.86] \\ \in (0.845, 0.86] \\ \in (0.86, 1] \end{array}$		$\begin{array}{l} \in (0.77, 0.775) \\ \in (0.775, 0.785) \\ \in (0.78, 0.785) \\ \in (0.785, 0.79) \\ \in (0.785, 0.79) \\ \in (0.79, 0.795, 0.80) \\ \in (0.80, 0.81] \\ \in (0.81, 1] \end{array}$
Inclusive SRs			
BDT-signal	$\begin{array}{l} \in (0.81,1] \\ \in (0.81,1] \\ \in (0.82,1] \\ \in (0.83,1] \\ \in (0.83,1] \\ \in (0.84,1] \\ \in (0.85,1] \end{array}$		$\in (0.77, 1]$ $\in (0.77, 1]$ $\in (0.78, 1]$ $\in (0.79, 1]$ $\in (0.79, 1]$

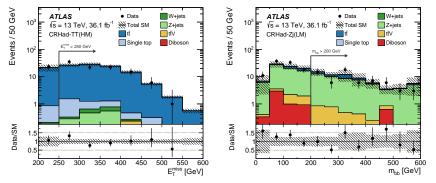
D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022


Searches for charginos with multilepton signatures • arXiv:2209.13935

D. W. Miller (EFI, Chicago; ATLAS)

Searches for charginos with multilepton signatures

▶ arXiv:2209.13935



D. W. Miller (EFI, Chicago; ATLAS)

Wh search in 2b+2q *final states* (0*lbb*): 36 fb⁻¹

▶ arXiv:1812.09432 (Dec 2018)

• Control region kinematic distributions

D. W. Miller (EFI, Chicago; ATLAS)

Wh search in 2b+2q final states (0*lbb*): 36 fb⁻¹

lttv

Diboson

 $\begin{array}{c} 10^{5} \\ 10^{4} \\ 10^{4} \\ 10^{2$

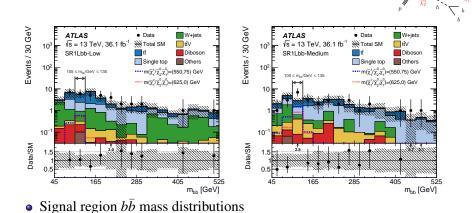
• Validation region yields

D. W. Miller (EFI, Chicago; ATLAS)

Wh region definitions: 0*lbb*

→ arXiv:1812.09432 (Dec 2018)

Variable	SRHad-High	SRHad-Low
$N_{ m lepton}$	= 0	= 0
$N_{\rm jet} \ (p_{\rm T} > 30 \ GeV)$	$\in [4, 5]$	$\in [4, 5]$
$N_{b ext{-jet}}$	= 2	=2
$\Delta \phi_{\min}^{4j}$	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	> 200
$m_{\rm eff}$ [GeV]	> 900	> 700
$m_{b\bar{b}}$ [GeV]	$\in [105, 135]$	$\in [105, 135]$
$m_{q\bar{q}}$ [GeV]	$\in [75, 90]$	$\in [75, 90]$
$m_{\rm CT} ~[{\rm GeV}]$	> 140	> 190
$m_{\rm T}^{b,{\rm min}}$ [GeV]	> 160	> 180


CR channels CRHad-TT(HM) CRHad-ST(HM) CRHad-Zj(HM) CRHad-TT(LM) CRHad-ST(LM) CRHad-Zj(LM)

Observed events	102	17	39	695	23	78
Fitted bkg events	102 ± 10	17 ± 4	39 ± 6	695 ± 26	23 ± 5	78 ± 9
tī	97 ± 11	3.7 ± 2.0	2.9 ± 2.4	659 ± 34	4.7 ± 2.3	10^{+12}_{-10}
Single top	$2.7^{+3.5}_{-2.7}$	10 ± 5	$0.8^{+0.9}_{-0.8}$	19 ± 19	15 ± 6	1.0 ± 0.9
W + jets	$0.5^{+0.6}_{-0.5}$	2.2 ± 1.1	0.0059 ± 0.0025	3.9 ± 3.1	2.8 ± 1.2	0.0059 ± 0.0026
Z + jets	1.1 ± 0.6	0.08 ± 0.07	32 ± 7	9.5 ± 3.2	0.09 ± 0.04	63 ± 17
$t\bar{t} + V$	0.63 ± 0.14	0.62 ± 0.16	2.0 ± 0.4	3.1 ± 0.5	0.80 ± 0.17	3.7 ± 0.6
Diboson	$0.08^{+0.14}_{-0.08}$	< 0.07	0.8 ± 0.8	1.16 ± 0.34	< 0.07	0.8 ± 0.5

D. W. Miller (EFI, Chicago; ATLAS)

Wh search in $2b+1\ell$ *final states* ($1\ell bb$): 36 fb^{-1}

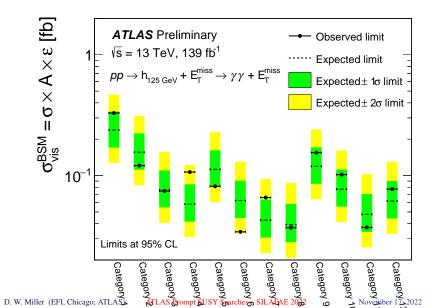
▶ arXiv:1812.09432 (Dec 2018)

Wh region definitions: 1*ℓbb*

→ arXiv:1812.09432 (Dec 2018)

Variable		SR1Lbb-Low S	R1Lbb-Medium	SR1Lbb-H	figh		
N _{lepton}	-		= 1				
$p_{\rm T}^{\ell}$ [GeV		> 27 $= 2 or 3$ $= 2$					
	$_{T} > 25 \ GeV)$						
$\dot{N_{b-jet}}$							
$E_{\rm T}^{\rm miss}$ [C	GeV]		> 200				
$m_{\rm CT}$ [G	eV]		> 160				
$m_{\rm T}$ [Ge	V]	$\in [100, 140]$	$\in [140, 200]$	> 200			
$m_{b\bar{b}}$ [Ge	eV]		$\in [105, 135]$				
CR channels	CR1Lbb-TT(LM)	CR1Lbb-TT(MM)	CR1Lbb-TT(HM)	CR1Lbb-Wj	CR1Lbb-ST		
Observed events	192	359	1115	72	65		
Fitted bkg events	192 ± 14	359 ± 19	1115 ± 34	72 ± 9	65 ± 8		
tī	147 ± 33	325 ± 32	1020 ± 90	15 ± 14	20^{+23}_{-20}		
Single top	28 ± 25	22^{+24}_{-22}	60^{+70}_{-60}	4^{+6}_{-4}	33 ± 25		
W+jets	16 ± 7	7.3 ± 2.7	25 ± 11	51 ± 17	8 ± 4		
$t\bar{t}+V$	1.16 ± 0.20	2.8 ± 0.4	6.9 ± 1.1	0.079 ± 0.022	3.2 ± 0.6		
Diboson	0.57 ± 0.24	0.92 ± 0.29	1.3 ± 0.4	2.1 ± 1.1	0.84 ± 0.28		
Others 0.125 ± 0.03		0.20 ± 0.06	1.9 ± 0.5	0.24 ± 0.17	0.10 ± 0.04		

D. W. Miller (EFI, Chicago; ATLAS)


Wh region definitions: $1\ell\gamma\gamma$

→ arXiv:1812.09432 (Dec 2018)

Variable	SR1L $\gamma\gamma$ -a	$\mathrm{SR1L}\gamma\gamma\text{-}\mathrm{b}$
N_{γ}	= 2	
$p_{\mathrm{T}}^{\gamma'} \mathrm{[GeV]}$	> (40, 31)	
$N_{ m lepton}$	= 1	
$p_{\mathrm{T}}^{\ell} \mathrm{[GeV]}$	> 25	
$E_{\rm T}^{\rm miss}$ [GeV]	> 40	
$\Delta \phi_{W,h}$	> 2.25	
$m_{\gamma\gamma} ~[{ m GeV}]$	$\in [120, 130]$	
$ \begin{array}{c} N_{b\text{-jet}} \left(p_{\mathrm{T}} > 30 \ GeV \right) \\ m_{\mathrm{T}}^{W \gamma_{1}} \ [\mathrm{GeV}] \end{array} $	= 0	
$m_{\mathrm{T}}^{W \gamma_1} \mathrm{[GeV]}$	≥ 150	
$m_{\mathrm{T}}^{\hat{W}\gamma_2}$ [GeV]	> 140	$\in [80, 140]$
$m_{\rm T} \; [{\rm GeV}]$	> 110	< 110

Wh region definitions: $1\ell\gamma\gamma$ *follow-up* (139 fb⁻¹)

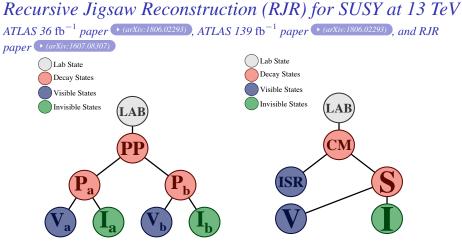
► ATLAS-CONF-2019-019 (May 2019)

24/31

Wh region definitions: $1\ell\gamma\gamma$ *follow-up (139* fb⁻¹)

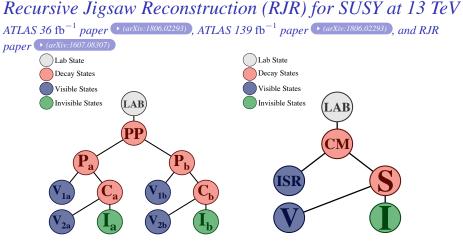
→ ATLAS-CONF-2019-019 (May 2019)

Channels	Names	Selection
	Category 1	$0 < S_{E_{T}^{\text{miss}}} \leq 2, N_{\ell} \geq 1$
	Category 2	$2 < S_{E_{\tau}^{\mathrm{miss}}} \leq 4, N_{\ell} \geq 1$
Leptonic	Category 3	$4 < S_{E_{\pi}^{\text{miss}}} \leq 6, N_{\ell} \geq 1$
	Category 4	$S_{E_T^{\mathrm{miss}}} > 6, N_\ell \ge 1$
	Category 5	$5 < S_{E_{T}^{\text{miss}}} \le 6, N_{\ell} = 0, N_j \ge 2, M_{jj} \in [40, 120] \; GeV$
	Category 6	$6 < S_{E_{\infty}^{\text{miss}}} \leq 7, N_{\ell} = 0, N_j \geq 2, M_{jj} \in [40, 120] \; GeV$
Hadronic	Category 7	$7 < S_{E_{\tau}^{\text{miss}}} \leq 8, N_{\ell} = 0, N_j \geq 2, M_{jj} \in [40, 120] \; GeV$
	Category 8	$S_{E_{T}^{miss}} > 8, N_{\ell} = 0, N_j \ge 2, M_{jj} \in [40, 120] \; GeV$
	Category 9	$6 < S_{E_{\mathrm{T}}^{\mathrm{miss}}} \leq 7, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \geq 2, M_{jj} \notin [40, 120] \; GeV)$
	Category 10	$7 < S_{E_{T}^{\text{miss}}} \leq 8, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \geq 2, M_{jj} \notin [40, 120] \text{ GeV})$
Rest	Category 11	$8 < S_{E_{T}^{\text{miss}}} \leq 9, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \geq 2, M_{jj} \notin [40, 120] \text{ GeV})$
	Category 12	$S_{E_{\rm T}^{\rm miss}} > 9, N_\ell = 0, N_j < 2 {\rm or} \left(\ N_j \geq 2, M_{jj} \notin [40, 120] \ GeV \right)$


D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022

Wh region definitions: $\ell\ell$

▶ arXiv:1812.09432 (Dec 2018)


Variable	SRSS-j1	SRSS-j23
$\Delta \eta_{\ell\ell}$	< 1.5	-
$N_{\rm jet} \ (p_{\rm T} > 20 \ GeV)$	= 1	= 2 or 3
$N_{b ext{-jet}}$	= 0	= 0
$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100
$m_{\rm T}~[{\rm GeV}]$	> 140	> 120
$m_{\rm eff}~[{\rm GeV}]$	> 260	> 240
$m_{\ell j(j)}$ [GeV]	< 180	< 130
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	> 80	> 70

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches - SILAFAE 2022

- Decompose events according to **particular decay topology assumption** and partition kinematics to **estimate missing degrees of freedom**
- "Hemispheres" defined using thrust axis of event
- Observables are computed by **minimizing hemisphere masses** and assigning missing degrees of freedom with each

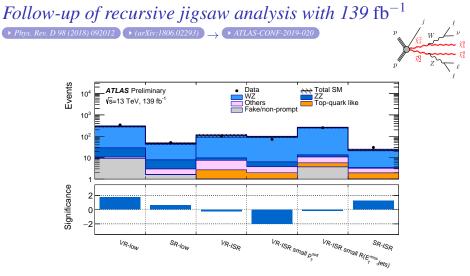
D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches - SILAFAE 2022

- Decompose events according to **particular decay topology assumption** and partition kinematics to **estimate missing degrees of freedom**
- "Hemispheres" defined using thrust axis of event
- Observables are computed by **minimizing hemisphere masses** and assigning missing degrees of freedom with each

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches - SILAFAE 2022

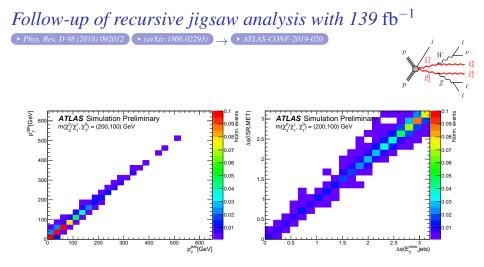
Follow-up of recursive jigsaw analysis with 139 fb^{-1}

▶ Phys. Rev. D 98 (2018) 092012 (▶ (arXiv:1806.02293) → (▶ ATLAS-CONF-2019-020


Region	$m_{\ell\ell}$	[GeV]	m_{T}^{W} [G	eV] i	$H_{3,1}^{\mathrm{PP}}$ [GeV]	$\frac{p_{\mathrm{T}~\mathrm{PP}}^{\mathrm{lab}}}{p_{\mathrm{T}~\mathrm{PP}}^{\mathrm{lab}} + H_{\mathrm{T}~3,1}^{\mathrm{PP}}}$	$-\frac{H_{{\rm T}3,1}^{\rm PP}}{H_{3,1}^{\rm PP}}$	$\frac{\boldsymbol{H}_{1,1}^{\mathrm{P_b}}}{\boldsymbol{H}_{2,1}^{\mathrm{P_b}}}$
CR3ℓ-VV	$\in (75)$, 105)	$\in (0,$	70)	> 250	< 0.1	2 > 0.75	-
VR3ℓ-VV	$\in (75)$, 105)	$\in (70, 1)$	00)	> 250	< 0.1	2 > 0.75	-
$SR3\ell_High$, 105)		150	> 550	< 0.1		> 0.8
$SR3\ell_Int$, 105)		130	> 450	< 0.1		> 0.75
SR3ℓ_Low	$\in (75)$,105)	>	100	> 250	< 0.0	5 > 0.9	-
Region	$m_{\ell\ell}$ [C	GeV]	m_{T}^{W} [GeV]	$\Delta \phi_{\rm ISR,I}^{\rm CM}$	RISR R	$p_{\rm T\ ISR}^{\rm CM}$ [GeV]	$p_{\mathrm{T~I}}^{\mathrm{CM}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{CM}}$ [GeV]
CR3ℓ_ISR-VV	\in (75,		< 100	> 2.0		> 80	> 60	< 25
VR3ℓ_ISR-VV SR3ℓ_ISR	$\in (75, \\ \in (75,]$		> 60 > 100	> 2.0 > 2.0		> 80 > 100	> 60 > 80	> 25 < 25
ShSt_ISh	e (10,	103)	> 100	/ 2.0) E (0.33, 1.0)	> 100	/ 80	< 20
	-				SR-low	SR-ISR	_	
		Obs	erved eve	ents	51	30		
		Fitted SM events		46 ± 5	23.0 ± 2.2			
		WZ			38 ± 5	19.5 ± 2.0		
		ZZ			4.9 ± 0.6	0.38 ± 0.07	7	
		Oth	ers		1.3 ± 0.7	1.2 ± 0.7		
		Top	-quark lil	ke	$0.03^{+0.18}_{-0.03}$	1.9 ± 0.8		
		Fake	e/non-pro	$^{\mathrm{ompt}}$	1.6 ± 1.3	$0.01\substack{+0.05\\-0.01}$		

• Relevant signal region definitions

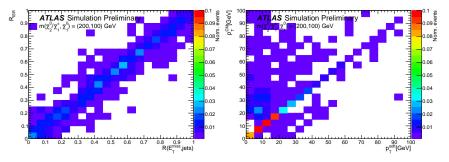
D. W. Miller (EFI, Chicago; ATLAS)


=

 \mathcal{D}

• Emulated Recursive Jigsaw Reconstruction (eRJR) confirmed the 3σ excess with 36 fb⁻¹, but sees a reduction in excess significance to 1σ with full 139 fb⁻¹

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022


• Emulated reconstruction techniques map onto the RJR observables with very high fidelity

D. W. Miller (EFI, Chicago; ATLAS) ATLAS Prompt SUSY Searches – SILAFAE 2022

Follow-up of recursive jigsaw analysis with 139 fb^{-1}

▶ Phys. Rev. D 98 (2018) 092012 (▶ (arXiv:1806.02293) → (▶ ATLAS-CONF-2019-020)

• Some ISR observables not as exact

D. W. Miller (EFI, Chicago; ATLAS)