Effective Dirac neutrino masses in local Abelian symmetries

with dark matter and dark baryogenesis

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:2112.09524 [Frontiers in Physics] arXiv:2205.05762 [PRD] In collaboration with Andrés Rivera (UdeA), David Suárez (UdeA), Walter Tangarife (Loyola University Chicago) Dark sectors

 $F_{\mu\nu}$ $V^{\mu\nu}$

 $\overline{\Psi}\Psi = \psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger} \rightarrow \psi_{\alpha}\psi_{\beta}\Phi^{(*)}$,

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\psi_{i}^{\dagger}\mathcal{D}\psi_{i}$ $-h(\psi_{1}\psi_{2}\Phi + h.c)$ Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle\Phi\rangle$ LHC production:

Gauged Symmetry: $\mathcal{X} \rightarrow D$:

Gauged Symmetry: $\mathcal{X} \rightarrow \mathcal{X}$:

 $\alpha = 1, \dots N \rightarrow N > 4$

 $F_{\mu\nu}$ $V^{\mu\nu}$

 $\overline{\Psi}\Psi = \psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger} \rightarrow \psi_{\alpha}\psi_{\beta}\Phi^{(*)},$

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\psi_{i}^{\dagger}\mathcal{D}\psi_{i}$ $-h(\psi_{1}\psi_{2}\Phi + h.c)$ Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle\Phi\rangle$ LHC production:

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to jets$

Gauged Symmetry: $\mathcal{X} \rightarrow L$:

 $\alpha = 1, \dots N \rightarrow N > 4$

 $\mathcal{L} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + i \sum_{i} \psi_{i}^{\dagger} \mathcal{D} \psi_{i}$ $-h(\psi_1\psi_2\Phi + h.c)$ Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h \langle \Phi \rangle$ $F_{\mu\nu}$ $V^{\mu\nu}$ Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to jets$ Gauged Symmetry: $\mathcal{X} \rightarrow L$: multi-component dark matter $\overline{\Psi}\Psi = \psi_1\psi_2 + \psi_1^{\dagger}\psi_2^{\dagger} \rightarrow \psi_0\psi_\beta\Phi^{(*)},$ $\alpha = 1, \dots N \rightarrow N > 4$

Any local Abelian extension of the Standard Model can be reduced to a set of integers which must satisfy the gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$ conditions:

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (1)$$

• From a list of N - 2 integers, e.g., for N even

$$\boldsymbol{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
(2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [\mathbf{l}_1, \mathbf{k}_1, \cdots, \mathbf{k}_n, -\mathbf{l}_1, -\mathbf{k}_1, \cdots, -\mathbf{k}_n,] \qquad \mathbf{y} = [0, 0, \mathbf{l}_1, \cdots, \mathbf{l}_n, -\mathbf{l}_1, \cdots, -\mathbf{l}_n] \qquad (3)$$

• From a list of N - 2 integers, e.g., for N even

$$\boldsymbol{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
(2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \cdots , k_n, -l_1, -k_1, \cdots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \cdots , l_n, -l_1, \cdots - l_n] \qquad (3)$$

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\boldsymbol{z} = \boldsymbol{x} \oplus \boldsymbol{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \boldsymbol{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \boldsymbol{y}, \qquad (4)$$

• From a list of N - 2 integers, e.g., for N even

$$\boldsymbol{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
(2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \cdots , k_n, -l_1, -k_1, \cdots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \cdots , l_n, -l_1, \cdots - l_n] \qquad (3)$$

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\boldsymbol{z} = \boldsymbol{x} \oplus \boldsymbol{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \boldsymbol{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \boldsymbol{y}, \qquad (4)$$

3

The parameter space to be explored with $z_{max} = 20$ (m = 10) has 96153 non vector-like solutions

$$\# \text{ of } \boldsymbol{q} \text{ lists} = (2m+1)^{N-2} = \begin{cases} 9261 \to 3 & N = 5 \\ 194841 \to 38 & N = 6 \\ \vdots & \vdots \\ 1.6 \times 10^{13} \to 65910 & N = 12 \\ \end{array}$$
(5)

• From a list of N - 2 integers, e.g., for N even

$$\boldsymbol{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
(2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \cdots , k_n, -l_1, -k_1, \cdots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \cdots , l_n, -l_1, \cdots - l_n] \qquad (3)$$

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\boldsymbol{z} = \boldsymbol{x} \oplus \boldsymbol{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \boldsymbol{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \boldsymbol{y}, \qquad (4)$$

3

The parameter space to be explored with $z_{max} = 20$ (m = 10) has 96153 non vector-like solutions

$$\# \text{ of } \boldsymbol{q} \text{ lists} = (2m+1)^{N-2} = \begin{cases} 9261 \to 3 & N = 5 \to [1, 5, -7, -8, 9] \\ 194841 \to 38 & N = 6 \\ \vdots & \vdots \\ 1.6 \times 10^{13} \to 65910 & N = 12 , \text{ instead } 10^{19} \end{cases}$$
(5)

Simplest secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D}\psi_i - \frac{1}{4} V_{\mu\nu} V'^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
(6)

 \rightarrow 5196 multi-component DM (N = 8, 12) \rightarrow 28 with two Dirac-fermion DM

Simplest secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D}\psi_i - \frac{1}{4} V_{\mu\nu} V^{\prime\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
(6)

 \rightarrow 5196 multi-component DM (N = 8, 12) \rightarrow 28 with two Dirac-fermion DM

$$z = [1, 2, 2, 4, -5, -5, -7, 8] \rightarrow \phi = 3 \rightarrow [(1, 2), (2, -5), (-5, 8), (4, -7)]$$
(7)

Simplest secluded model with SM-singlet massive chiral fermions from SSB: $U(1)_D$

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D}\psi_i - \frac{1}{4} V_{\mu\nu} V'^{\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
(6)

96153 ightarrow 5196 multi-component DM (N = 8, 12) ightarrow 28 with two Dirac-fermion DM

$$\boldsymbol{z} = [1, 2, 2, 4, -5, -5, -7, 8] \rightarrow \phi = 3 \rightarrow [(1, 2), (2, -5), (-5, 8), (4, -7)]$$

$$1 \quad 2 \quad 2 \quad -5 \quad -5 \quad 8$$

$$1 \quad \begin{bmatrix} 0 & h_{(1,2)} & h_{(1,2)}' & 0 & 0 & 0 \\ h_{(1,2)} & 0 & 0 & h_{(2,-5)} & h_{(2,-5)} & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ h_{(1,2)}' & 0 & 0 & 0 & 0 & 0 \\ 0 & h_{(2,-5)}' & 0 & 0 & 0 & h_{(-5,8)}' \\ 0 & 0 & 0 & h_{(-5,8)}' & h_{(-5,8)}' \\ 0 & 0 & 0 & h_{(-5,8)}' & 0 \end{bmatrix} \Psi \phi^{(*)} + h_{(4,-7)} \psi_4 \psi_{-7} \phi^*$$

8

Δ

Effective Dirac neutrino mass operator

Decrease the number of charges to be assigned to dark matter particles, ψ_i below

$$[\chi_1,\chi_2,\cdots,\psi_1,\psi_2,\cdots,\psi_{N'}]$$

Secluded case:

 $[\nu,\nu,(\nu),\psi_1,\psi_2,\cdots,\psi_{N'}]$

 $\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3,$

$$\mathcal{L}_{\text{eff}} = h_{\nu}^{\alpha i} \left(\nu_{R\alpha} \right)^{\dagger} \epsilon_{ab} L_{i}^{a} H^{b} \left(\frac{\Phi^{*}}{\Lambda} \right)^{\delta} + \text{H.c.}, \quad \text{with } i = 1, 2, 3,$$

 Φ is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with $D\text{-}{\rm charge}$

$$\delta\phi = -\nu \qquad , \qquad (10)$$

(9)

Decrease the number of charges to be assigned to dark matter particles, ψ_i below

 $[\chi_1,\chi_2,\cdots,\psi_1,\psi_2,\cdots,\psi_{N'}]$

Secluded case:

Active case:

 $[\nu, \nu, (\nu), \psi_1, \psi_2, \cdots, \psi_{N'}] \qquad [\nu, \nu, (\nu), m, m, m, \psi_1, \psi_2, \cdots, \psi_{N'}]$

 $\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3, \quad X(L_i) = -L, \quad X(H) = h \qquad \to m = L - h$ (9)

$$\mathcal{L}_{\text{eff}} = h_{\nu}^{\alpha i} \left(\nu_{R\alpha} \right)^{\dagger} \epsilon_{ab} L_{i}^{a} H^{b} \left(\frac{\Phi^{*}}{\Lambda} \right)^{\delta} + \text{H.c.}, \qquad \text{with } i = 1, 2, 3,$$

 Φ is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with X-charge

$$\phi = -(\mathbf{\nu} + \mathbf{m})/\delta \,, \tag{10}$$

Standard model extended with $U(1)_{\mathcal{X}=\mathcal{X} \text{ or } D}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=\mathbf{D} \text{ or } \mathbf{X}}$
Q_i^{\dagger}	2	-1/6	Q
d _{Ri}	1	-1/2	d
u _{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e _{Ri}	1	-1	е
Н	2	1/2	h
χ_{lpha}	1	0	Z_{lpha}

Table 1: $i = 1, 2, 3, \ \alpha = 1, 2, \dots, N'$

Standard model extended with $U(1)_{\mathcal{X}=L \text{ or } B}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=\boldsymbol{B}}$ or \boldsymbol{L}
Q_i^{\dagger}	2	-1/6	Q
d _{Ri}	1	-1/2	d
u _{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e _{Ri}	1	-1	е
Н	2	1/2	h = 0
χ_{lpha}	1	0	Z_{lpha}
$(L'_L)^{\dagger}$	2	1/2	-x'
L_R''	2	-1/2	x''
e_R'	1	-1	x'
$(e_L^{\prime\prime})^\dagger$	1	1	-x''
Φ	1	0	ϕ
S	1	0	S

Table 1: minimal set of new fermion content: L = e = 0 for $\mathcal{X} = B$. Or Q = u = d = 0 for $\mathcal{X} = L$. $i = 1, 2, 3, \alpha = 1, 2, ..., N'$

Anomaly cancellation: X = X

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\mathbf{u} = -\mathbf{e} - \frac{2}{3}\mathbf{L} - \frac{1}{9}\left(\mathbf{x}' - \mathbf{x}''\right), \quad \mathbf{d} = \mathbf{e} + \frac{4}{3}\mathbf{L} - \frac{1}{9}\left(\mathbf{x}' - \mathbf{x}''\right), \quad \mathbf{Q} = -\frac{1}{3}\mathbf{L} + \frac{1}{9}\left(\mathbf{x}' - \mathbf{x}''\right), \quad (11)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'') = 0.$$
 (12)

Anomaly cancellation: X = X

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$u = -e - \frac{2}{3}L - \frac{1}{9}(x' - x''), \quad d = e + \frac{4}{3}L - \frac{1}{9}(x' - x''), \quad Q = -\frac{1}{3}L + \frac{1}{9}(x' - x''), \quad (11)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'') = 0.$$
 (12)

- If: x' = x'' or x' = x'' = 0
- We need h = -e L = L m:

$$u = \frac{4L}{3} - m$$
, $d = m - \frac{2L}{3}$, $Q = -\frac{L}{3}$, $e = m - 2L$, $h = L - m$

Anomaly cancellation: X = X

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$u = -e - \frac{2}{3}L - \frac{1}{9}(x' - x''), \quad d = e + \frac{4}{3}L - \frac{1}{9}(x' - x''), \quad Q = -\frac{1}{3}L + \frac{1}{9}(x' - x''), \quad (11)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'') = 0.$$
 (12)

- If: x' = x'' or x' = x'' = 0
- We need h = -e L = L m:

$$u = \frac{4L}{3} - m$$
, $d = m - \frac{2L}{3}$, $Q = -\frac{L}{3} \neq 0$, $e = m - 2L$, $h = L - m$

least two right-handed neutrinos and have non-vanishing Dirac o Majorana masses for the other SM-singlet chiral fermions in the solution.

 $U(1)_{D} \text{ and } \delta = 1$ $U(1)_{X} \text{ and } \delta = 1$ $U(1)_{D} \text{ and } \delta = 2$ $U(1)_{X} \text{ and } \delta = 2$ $U(1)_{D} \rightarrow Z_{p} \otimes Z_{q} \text{ and } \delta = 1$ $U(1)_{X} \rightarrow Z_{p} \otimes Z_{q} \text{ and } \delta = 1$

$U(1)_{\mathbf{X}}$ selection

• Active symmetry m = 3

$$(-5, -5, 3, 3, 3, -7, 8)$$

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:

$$(-5, -5, 3, 3, 3, -7, 8)$$

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:

• Active symmetry:
$$m = 3 \rightarrow \phi = -(\nu + m)/\delta = 1$$
 $(-5, -5, 3, 3, 3, -7, 8)$

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:
- Active symmetry: $m=3
 ightarrow \phi=-(
 u+m)/\delta=1$

(-5, -5, 3, 3, 3, -7, 8)

• Dirac-fermionic DM: $(\psi_L)^{\dagger} \psi_R'' \Phi^* \rightarrow z_6 = -7, \ z_7 = 8$

$U(1)_{\mathbf{X}}$ selection

- Active symmetry m = 3
- Effective neutrino mass $\delta = 2 \rightarrow \nu = -5$:
- Active symmetry: $m = 3 \rightarrow \phi = -(\nu + m)/\delta = 1$

 $\left(-5,-5,3,3,3,-7,8\right)$

• Dirac-fermionic DM: $(\psi_L)^{\dagger} \psi_R'' \Phi^* \rightarrow z_6 = -7, \ z_7 = 8$

1122 solutions from \sim 400,000

Anomaly cancellation: $\mathcal{X} = \mathbf{L}$ or \mathbf{B}

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\boldsymbol{u} = -\boldsymbol{e} - \frac{2}{3}\boldsymbol{L} - \frac{1}{9}\left(x' - x''\right), \quad \boldsymbol{d} = \boldsymbol{e} + \frac{4}{3}\boldsymbol{L} - \frac{1}{9}\left(x' - x''\right), \quad \boldsymbol{Q} = -\frac{1}{3}\boldsymbol{L} + \frac{1}{9}\left(x' - x''\right), \quad (13)$$

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'')=0.$$
 (14)

- Previously: x' = x''
- We choose instead (*h* = 0):

 $e = -L, \qquad (15)$

so that (*L* is still a free parameter)

$$Q = -u = -d = -\frac{1}{3}L + \frac{1}{9}(x' - x'').$$
(16)

If $B = 0 \rightarrow U(1)_L$

Anomaly cancellation: $\mathcal{X} = \mathbf{B}$

The gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$, can be written as the following system of Diophantine equations, respectively,

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (17)$$

where N = N' + 5 and

 \rightarrow

$$z_{N'+1} = -x',$$
 $z_{N'+2} = x'',$

$$z_{N'+2+i} = L, \quad i = 1, 2, 3$$
 (18)

$$9\mathbf{Q} = -\sum_{\alpha=N'+1}^{N'+5} z_{\alpha} = -x' + x'' + \mathbf{L} + \mathbf{L} + \mathbf{L}, \qquad (19)$$

 $L = 0 \rightarrow U(1)_B$ but $Q = 0 \not\rightarrow U(1)_L$

• *L* = 0

$$(5, 5, -3, -2, 1, -6)$$

- *L* = 0
- Effective neutrino mass: $\phi = -\nu = -5$

$$(5, 5, -3, -2, 1, -6)$$

• *L* = 0

- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions: $(L'_L)^{\dagger} L''_R \Phi^* \rightarrow x' = -1, \ x'' = 6$

$$(5, 5, -3, -2, 1, -6)$$

• *L* = 0

- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions: $(L'_L)^{\dagger} L''_R \Phi^* \rightarrow x' = -1, \ x'' = 6$
- Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$

$$(5, 5, -3, -2, 1, -6)$$

• *L* = 0

- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions: $(L'_L)^{\dagger} L''_R \Phi^* \rightarrow x' = -1, \ x'' = 6$
- Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$

959 solutions from \sim 400,000 (as in U(1)_D)

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

Scotogenic realization

Field	$SU(2)_L$	$U(1)_Y$	$U(1)_B$
u _{Ri}	1	2/3	u = 1/3
d _{Ri}	1	-1/3	d = 1/3
$(Q_i)^{\dagger}$	2	-1/6	Q = -1/3
$(L_i)^{\dagger}$	2	1/2	L = 0
e_R	1	$^{-1}$	e = 0
$(L'_L)^{\dagger}$	2	1/2	-x' = -3/5
e_R'	1	-1	x' = 3/5
$L_R^{\prime\prime}$	2	-1/2	x'' = 18/5
$(e_l^{\prime\prime})^\dagger$	1	1	-x'' = -18/5
$\nu_{R,1}$	1	0	-3
$\nu_{R,2}$	1	0	-3
XR	1	0	6/5
$(\chi_L)^{\dagger}$	1	0	9/5
Н	2	1/2	0
S	1	0	3
Φ	1	0	3
σ_{lpha}^-	1	1	3/5
σ'_{α}^{-}	1	-1	-12/5

16

- $\bullet \ SARAH {\rightarrow} SPheno {\rightarrow} Micro Megas$
- η_B calculation code
- Python notebook with the scan

Black points: Dirac neutrinos with proper DM and baryon assymetry

A methodology to find all the universal Abelian extensions of the standard model is designed

All of the extensions can be reformulated as the solution of

$$\sum_{lpha=1}^N z_lpha = 0$$
, $\sum_{lpha=1}^N z_lpha^3 = 0$,

which we fully scan until N=12 and $|z_{\max}|=20$

Once the physical conditions are stablished, the full set of self-consistent models are found from a simple data-analysis procedure