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Ultra-Light Dark Matter models 
and some observational probes


(Pulsar timing and gravitational waves interferometers)



Motivations


Dark Matter (DM) remains a mysterious component of our Universe! 

An alternative to CDM: ultralight  DM (ULDM) (standard candidates are 
axion- like particles and dilatons, but can also be vectors, spin 2 tensors).

Ultralight m ≲ 1eV Large occupation number: n = ρDM/m

Classical field approximation



ULDM in the halo

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White
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E. g spin 2 (direct interaction)
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g̃µ⌫ := gµ⌫ +
↵

Mpl
Mµ⌫ ↵Changing frame,                                            ,    at leading order in    : S ' Sfree[g̃,Mµ⌫ , ]

[Armaleo, DLN & Urban (2020)]

We assume

• Equivalent to a GW perturbation:
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Why pulsars?


• Radio pulsar: rapidly rotating neutron star (NS) with coherent radio 
emission  along their magnetic poles and highly stable spin frequency

• Pulsar timing techniques provide very precise measurements of its motion 

• Ideal systems to constraint alternative theories of gravity, the presence of 
gravitational waves,  and also ULDM!

Hulse-Taylor
Interstellar 
 medium Pulsar  timing

Spin period = P



Averaging over the celestial sphere     ,  

we obtain the same as a GW with:  

Estimating the limits: [Armaleo, DLN & Urban (2020)]
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Bounds on the equivalent gravitational wave strain as a function of 
frequency, reproduced with permission from [Porayko et al. 2018]

  An improvement of  is expected with SKA (15yrs, 5K pulsars) 

[ nal, Urban, Kovetz, arXiv:2209.02741]
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Why Binary Pulsars (BPs)?


Interstellar 
 medium
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Numbers:

v ⇠ 10�3, m ⇠ 10�18 ÷ 10�22eV

L ⇠ 108 km

✓
Pb

100days

◆2/3 ✓M1 +M2

M�

◆1/3

L

• Non relativistic: ✓ 

• Homogeneous: ✓ 

• Osc. are relevant!

v2 ⌧ 1

tosc ≃ 100 days ( 10−22eV
m )

λcoh ∼ 1.3 × 1012km ( 10−3

V0 ) ( 10−18eV
m )

λcoh ≫ L



Secular effects of DM on the binary pulsar orbits


๏ Oscillations of the DM field produce  periodic perturbations to the PB 
orbits:

๏ The unperturbed orbits can be expressed as Fourier series
X

n

Qn cos(n 2⇡/Pb +⌥) (n 2 N)

๏ In resonance                                                                                                                  

there is a secular effect on the orbital parameters; 

for instance,                                                               , 

                                                                                  …

m ' N2⇡/Pb (N 2 N)

Ejemplos :Pb ! Pb + Ṗb(T � T0)

e ! e+ ė(T � T0)

Force ⇠ cos(mt+⌥)

Ejemplos :Pb ! Pb + Ṗb(T � T0)

e ! e+ ė(T � T0)
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Symbols corresponds to resonances: - Dark  symbols (actual precision) 
- Light symbols (a factor 10 better)
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Work in progress: What is the sensitivity beyond the resonant points?



• Currently there are upper limits on the maximum strain for CWs.
 E.g.      for                     h ≲ 10−25 f ∼ 102 Hz

Why Gravitational Wave Interferometers (GWIs)?


• Current facilities can detect transient events with    (e.g. binary 
BHs)

h = 10−21

• Weaker signals could be detected if they are coherent over a longer time 
(e.g. continuous GWs (CWs) emitted by rapidly spinning neutron stars)

•  The ULDM field may not be coherent over the entire observation campaign. 

•  Semi-coherent techniques to analyze CWs can be adapted and optimized, 
taking into account the coherence time of the ULDM [Miller el al 2020]
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Bounds on models with direct couplings

E.g. with s=2:

Dij = (ninj �mimj)/2

Using the response function of the detector with arms along     and      in the detector frame,                                     n̂ m̂

[Armaleo, DLN & Urban (2021)]

Taking the average over polarizations

Optimized using Semi-
coherent techniques  



Conclusions

• ULDM can produce potentially observable effects on pulsars and GWIs

• Precise timing measurements are already ongoing for many pulsars  

• A given BP is sensitive to ULDM only in a few narrow resonant bands 

• New (~1000) BPs are expected to be discovered by SKA -> significant 
coverage

• PTA is sensitive to lighter fields and can provide complementary bounds 

• To take advantage of the large number of systems it is necessary to 
develop  new statistical approaches and techniques for the extraction of 
the constraints on the ULDM field -> Work in progress

• GWIs are useful to probe direct interactions between ULDM and the SM 
providing complementary bounds for heavier fields

• Both for pulsars and GWIs, it would be worth performing a dedicated data 
analysis! 
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Thanks!


