

Institución Universitaria

Acreditada en Alta Calidad

Five texture zeros in the lepton sector and neutrino oscillations at DUNE

Richard H. Benavides[†], D. V. Forero^{*}, Luis Muñoz[†] Jose M. Muñoz^{\triangle}, Alejandro Rico[†], A. Tapia^{*},

¹ Instituto Tecnológico Metropolitano, Facultad de Ciencias Exactas y Aplicadas, Medellín, Colombia. * Universidad de Medellín, Facultad de Ciencias Básicas, Carrera 87 N° 30 - 65, Medellín, Colombia. △ Universidad EIA, grupo FTA, Envigado, Colombia.

1. Introduction

In this work, we have assumed special structures for the charged and neutral mass matrices in the lepton sector, assuming only Dirac neutrinos. The structure of the model is SM + three singlets right handed neutrinos.

2. Forms with five textures zeros

3.1 Analysis of the *RRR*₄-form

For this particular form we find the relations:

$$c_n = -a_n + m_1 - m_2 + m_3,$$

$$\begin{aligned} |b_n| &= \sqrt{m_1 m_2 m_3 / (-a_n + m_1 - m_2 + m_3)}, \\ |d_n| &= \sqrt{\frac{(a_n - m_1 + m_2)(a_n - m_1 - m_3)(a_n + m_2 - m_3)}{-a_n + m_1 - m_2 + m_3}} \\ a_l &= m_e - m_\mu, \end{aligned}$$

$$|o_l| = m_{\tau},$$

$$|c_l| = \sqrt{m_e m_\mu} \,.$$

It is possible to diagonalize the mass matrices at function of m_1, m_2, m_3, a_n and m_e, m_μ, m_τ , respectively.

4. DUNE sensitivity to the mixing parameters

The DUNE experiment is a long-baseline multi-purpose neutrino oscillation experiment that is under construction. We calculated the lepton mixing matrix for each form showed in the first table and their were implemented in the GLoBES C-library probability engine. We simula-

The Dirac Lagrangian mass term for the lepton sector is given by

 $-\mathcal{L} = \bar{\nu}_L M_n \nu_R + l_L M_l l_R + h.c, \quad (1)$ This implies: $U_{PMNS} = U_l^{\dagger} U_{\nu}$ is the mixing matrix.

A WBT: $M_n \rightarrow M_n^R = U M_n U^{\dagger}, M_l \rightarrow$ $M_l^R = U M_l U^{\dagger}$. Both representations $M_{\nu,l}$ and $M_{\nu,l}^R$ are equivalent, because

 $U_{PMNS} = U_{I}^{\dagger} U_{\nu} = U_{I}^{\dagger} U U^{\dagger} U_{\nu} = U_{I}^{R\dagger} U_{\nu}^{R} = U_{PMNS}^{R}$ (2) The textures considered in this work are the ones are shown in the next table,

In order to constrain the model parameters $\vec{\lambda}$ in each form, the following statistical test was implemented: $\chi^2(\dot{\lambda}) =$ $\sum_{i < j} \left(\frac{\sin^2 \theta_{ij} - \sin^2 \tilde{\theta}_{ij}}{\sigma(\sin^2 \theta_{ij})} \right)^2$, with i, j = 1, 2, 3.

Parameter	Best fit	3σ range
$m_0 (\times 10^{-3} \mathrm{eV})$	3.2	[2.2, 4.1]
a_n (×10 ⁻² eV)	1.8	[1.6, 2.5]
ϕ_1/π	0	[-0.4, 0.4]

The $\chi^2_{min.} = 1.4$.

3.2 Analysis of the T₁-form

In this case the four parameters $\lambda =$

ted the disappearance and appearance process from $(\nu_{\mu}, \bar{\nu}_{\mu})$.

4.1 Results for the RRR $_4$ and T_1 -form

 $\Delta \chi^2$ -profiles for each one of the three mixing parameters. ($\Delta \chi^2$ -profiles for each one of the four mixing parameters $\vec{\lambda}$ = $\{m_0, a_n, \phi_1, \phi_2\}$ respectively)

Factoring the phases: $\Phi M' \Phi^*$, where, $\Phi = \text{Diag}(1, e^{i\phi_1}, e^{i\phi_2})$. Such that the M' matrix now is real.

The real rotation matrices, R_l and R_n that diagonalize each sector can be found using the invariants, $\text{Det}\{M_{(n,l)}^{\text{diag}}\} =$ $\mathsf{Det}\{M_{(n,l)}\}\mathsf{Tr}\{M_{(n,l)}^{\mathsf{diag}}\} = \mathsf{Tr}\{M_{(n,l)}\},\$ $Tr\{[M_{(n,l)}^{diag}]^2\} = Tr\{[M_{(n,l)}]^2\}, \text{ where }$ $M_{(n,l)}^{\mathsf{diag}} = \mathsf{Diag}\{m_{(1,e)}, -m_{(2,\mu)}, m_{(3,\tau)}\},$ and the lepton mixing matrix can be written as: $K = R_l \Phi R_n^T$. From this matrix we find the three mixing angles in the form: $\tan \theta_{12}$ = $|K_{e,2}|/|K_{e,1}|, \sin \theta_{13} = |K_{e,3}|, \tan \theta_{23} =$ $|K_{\mu,3}|/|K_{\tau,3}|$, and, The Jarlskog invariant $J_{CP} = \mathcal{I}\{K_{e1}^* K_{\mu 3}^* K_{e3} K_{\mu 1}\}.$

Parameter	Best fit	3σ range
$m_0 (\times 10^{-3} \text{eV})$	3.3	[1.8, 4.7]
a_n (×10 ⁻² eV)	2.3	[1.4, 3.7]
ϕ_1/π	0.4	Unconstrained
ϕ_2/π	0.9	Unconstrained
$\gamma 2 / \cdots$		

The χ^2 value at the minimum is $\chi^2_{min} = 0$

4.2 DUNE sensitivity to the CP-violating pha-

ses

In the left (right) panel the sensitivity obtained for the RRR₄ (T_1) forms.

Jarlskog invariant in terms of the ϕ phases.

5. Conclusions

Texture zeros diminish the mathematical parameters in the models, they produce an alternative to the PDG parametrization, that can explain all observables of neutrino physics.

6. References

This work is in a review process in a journal (PRD), for more details see:: https://arxiv.org/abs/2207.04072.