

Status of Project, Research & Development

Claudio O. Dib

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

on behalf of Ulisses Barres de Almeida

for the SWGO Collaboration

www.swgo.org

In Memory of Prof. Ronald Cintra Shellard (1948 – 2021)

Prof. Ron Shellard was a pioneer and leader in the fields of **Particle** and **Astroparticle Physics** in **Brazil** and **Latin America**: He was a key scientist in:

- Establishing Brazil's collaboration with CERN,
- Establishment of the intl' collaborations for the Pierre Auger Observatory and the Cherenkov Telescope Array (CTA),
- Representation of Brazil in the ANDES Lab initiative,
- Proponent of the **LATTES** project, and the convergence of the intl' community for the foundation of **SWGO**.
- Representative of Brazil in the SWGO Steering Committee.

WImage: SBPMAT

We miss Ron as a great leader, a wise advisor and a dear friend.

- The field in context
- Introduction of SWGO
- Status of R&D
- Science Outlook

Status summary of the field

Larger and higher...

A new window for the UHE sky

SWGO: a new view of the sky

Science Case: https://arxiv.org/abs/ 1902.08429

GR observatories from Earth:

• The field in context

- Introduction of SWGO
- Status of R&D
- Science Outlook

Ground-based Gamma-ray Astronomy Network

HESS 🔘

LHAASO

MAGIC

cta

VERITAS

HAWC

- SILAFAE 2022 -

Bolivia 4.7k

A Wide-field Gamma-ray Observatory in the South

Chile 4.8 k

Bolivia 4.7k

A Wide-field Gamma-ray Observatory in the South

Chile 4.8 k

	Peru 13º S	OF ACRE	STATE				
	Yanque (Peru) Imatal	Lake Sibinacocha (Peru) (Peru) Cochabambao	(Bolivia) Viivia Santa Cr de la Sier	Shortlist Site visit Site sele	ing: Fal s: Octo ction: F	l 2022 ber all 2023	
		5 25	1 ME	Country	Elevation	Location:	
		Sen th	and .	Peru	4900	Laguna Sibina	cocha
	AAP Paj	jonal (Chile)	VEL	Peru	4450	Imata	
ALL DECEMBER OF	2 40 €	- 701	17	Peru	4450	Yanque	
	24 3	Alto Tocomar (Arger	ntina	Argentina	4800	Cerro Vecar	
		0	-	Argentina	4450	Alto Tocomar	
and the second sec		Chile Angle	A D	Chile	4700	ALMA Pampa	La Bola
and the second sec		Chile P 3 CAL	<u>42</u> E	Chile	4400	AAP Pajonale	S
		123	12.	Bolivia	4700	ALPACA area	
CONTRACT AND IN	· · · ·	and the			EX.		

SWGO Collaboration

Argentina	Italy
Brazil	Mexico
Chile	Peru
China	Portugal
Croatia	South Korea
Czech Republic	United Kingdom
Germany	United States

The baseline detector concept

- Core: Ø 320 m, FF = 80% 5,700 WCD units
- Outer: Ø 600 m, FF = 5% 880 WCD units
- Altitude: 4,700 m a.s.l.
- ♦ muon counting

A1

500 m

600 GeV

SWGO Baseline Requirements

14 TeV

35 degree zenith angle

.

- SILAFAE 2022 -

- Larger and denser detector array at higher altitude w.r.to HAWC
 - → Very precise measurements possible below 1 TeV

Status & Plan

	SWGO R&D Phase Milestones
M1	R&D Phase Plan Established
M2	Science Benchmarks Defined
M3	Reference Configuration & Options Defined
M4	Site Shortlist Complete
M5	Candidate Configurations Defined
M6	Performance of Candidate Configurations Evaluated
M7	Preferred Site Identified
M8	Design Finalised
M9	Construction & Operation Proposal Complete

◎ R&D Phase

- → Kick off meeting Oct 2019
- → Expected completion 2024
 - ✓ Site and Design Choices made
- → Then:
- Preparatory Phase
 - → Detailed construction planning
 - → Engineering Array
- (Full) Construction Phase
 - → 2026+

Roadmaps

- → US Decadal Review
- → SNOWMASS, APPEC, Astronet

- The field in context
- Introduction of SWGO
- Status of R&D
- Science Outlook

More Detector Options and Prototyping

similarly B1, C1, D1, ..., E4 (13 total) EOUAL N

EQUAL NOMINAL COST ARRAYS

2.50 m 0.50 m 3.82 m

A

С

D

F

5.20 m

PRELIMINARY

Full-array sims

Configuration A1

Proton / gamma-ray efficiency

S. Kunwar et al. 2022

R. Conceição et al. 2022a

γ/CR selection Shower footprint

μ detection

F. Bisconti & A. Chiavassa 2022 S. Kunwar et al. 2022

Multi-PMT WCDs

R. Conceição et al. 2022a

SWGO Performance Goal Angular Resolution

y (m)

SWGO Performance Goal Angular Resolution

- The field in context
- Introduction of SWGO
- Status of R&D
- Science Outlook

Science

Geminga

Relative Intensity [10⁻³]

0

Moon (To Scale)

an shines and

-1.5

Science Case	Design Drivers		
Transient Sources:	Low-energy sensitivity &		
Gamma-ray Bursts	Site altitude ^a		
Galactic Accelerators:	High-energy sensitivity &		
PeVatron Sources	Energy resolution ^b		
Galactic Accelerators:	Extended source sensitivity		
PWNe and TeV Halos	& Angular resolution ^c		
Diffuse Emission:	Background rejection		
Fermi Bubbles			
Fundamental Physics:	Mid-range energy sensitivity		
Dark Matter from GC Halo	Site latitude ^{d}		
Cosmic-rays:	Muon counting capability ^e		
Mass-resolved dipole /			
multipole anisotropy			

2

Equatorial

1.5

Science

Geminga

0

Moon (To Scale)

anthese and

		PRELIMINARY
Science Case	Design Drivers	DESIGN TARGETS
Transient Sources: Gamma-ray Bursts	Low-energy sensitivity & Site altitude ^a	Eth → 100 GeV
Galactic Accelerators: PeVatron Sources	High-energy sensitivity & Energy resolution ^b	Eres < 20%
Galactic Accelerators: PWNe and TeV Halos	Extended source sensitivity & Angular resolution ^c	Θ res ~ 0.1°
Diffuse Emission: Fermi Bubbles	Background rejection	CR res @ 10 ⁻⁴
Fundamental Physics: Dark Matter from GC Halo	Mid-range energy sensitivity Site latitude d	
Cosmic-rays: Mass-resolved dipole / multipole anisotropy	Muon counting capability ^e	

.

32

Equatorial

1.5

-1.5 Relative Intensity [10⁻³]

Extended and UHE sources

worse than IACTs at low É! ..but room for improvement < 1 TeV

And a number of other advantages...

Transients with SWGO

CTA: 10⁻¹¹ erg/cm²/s @ 100 GeV

Short-timescale sensitivity of ground-particle detectors is much

- → 100% duty cycle → higher rate and monitoring capability of transients \rightarrow bridging the gap with satellite facilities
- Serendipitous view observation of onset / prompt emission of GRBs
- → A trigger instrument!

0

- Ind searches and offline checks for afterglow triggers
 - Critical synergy with IACTs and other MWL + MM instruments

SWGO can bring the 10s deg² error boxes (GBM, GW) down to \sim deg²

1 min sensitivity:

- Fermi-LAT: 10⁻⁷ erg/cm²/s @ 1 GeV
- SWGO: 10⁻⁹ erg/cm²/s @ < 500 GeV

Transients with SWGO

 Short-timescale sensitivity of ground-particle detectors is much worse than IACTs at low E! But room for improvement < 1 TeV

Transients with SWGO

 Energy threshold is crucial for variability studies, in particular short-transient events such as GRBs

Neutrino Synergies

SWGO+LHAASO

\rightarrow Full sky map of TeV-PeV γ emission

Strongly complements new generation of neutrino instruments

→ Mapping out diffuse emission / separating inv. Compton vs. pion decay emission, <u>Dark Matter search</u> +++

→ Nearby transients/flares

Ocharged cosmic ray physics at the knee → Mass-resolved anisotropy studies

Measuring μ-content with WCDs

→ Tagging of single muons at detector unit

Summary

- SWGO is deep into the R&D phase
 - → Figuring in the **future infrastructure roadmaps** in the US, EU and LA
- Engineering array at few-% scale planned after CDR, in 2024+

Science and performance goals

- → New window for PeVatron astronomy in the southern hemisphere
 - Complementary to LHAASO's sky view

✓ Origin of Galactic Hadronic Cosmic-rays

- → Wide-energy range coverage 100 GeV 1 PeV
 - ✓ Complementary to CTA
 - Bridging the satellite all-sky monitoring capabilities
- → Sensitivity for transient phenomena below 1 TeV
- → Crucial mass-resolved CR data at the knee region

A key instrument for MM astrophysics for the next decades!

CONTACT: swgo_spokespersons@swgo.org

www.swgo.org

Thank you!

