

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

FCC HEB lattice options

B. Dalena, A. Chance

Thanks to:

B. Haerer, L. Van Riesen-Haupt, T. Charles, R. Tomas, T. Persson, F. Antoniou, O. Etisken, M. Zampetakis, M. Hofer, F. Carlier, B. Holzer, A. Franchi, A. Latina

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Ceal Outline

FUTURE CIRCULAR COLLIDER

- Layout of the HEB ring
- ➢ 60°/60° and 90°/90° Optics
- DA vs momentum
- Momentum detuning

Cea Layout

FUTURE CIRCULAR COLLIDER

CIRCULAR COLLIDER	FUTURE
COLLIDER	CIRCULAR
	COLLIDER

Magnet	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	G	71
	Field at W energy (80 GeV)	G	284
	Length	m	11.1
Quadrupole	Gradient at injection (20 GeV)	T/m	1.74
	Gradient at W energy (80 GeV)	T/m	6.9
	Length	m	1.5
Sextupole	Gradient at injection (20 GeV)	T/m ²	75
	Gradient at W energy (80 GeV)	T/m ²	300
	Length	m	0.5

- FODO cells of ~52 m
- Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.65 m Distance between quadrupole and sextupole: 0.15 m Distance between dipole and sextupole: 0.356 Distance between quadrupole and dipole: 0.704 m (it includes BPM and dipole correctors)

dipoles = 2×2944

quadrupoles = 2944

sextupoles = 2632/6

FUTURE
CIRCULAR
COLLIDER

Magnet	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	G	71
	Field at ttbar energy (182.5 GeV)	G	650
	Length	m	11.1
Quadrupole	Gradient at injection (20 GeV)	T/m	2.5
	Gradient at ttbar energy (182.5 GeV)	T/m	22.5
	Length	m	1.5
Sextupole	Gradient at injection (20 GeV)	T/m ²	174
	Gradient at ttbar energy (182.5 GeV)	T/m ²	1582
	Length	m	0.5

- FODO cells of ~52 m
- Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.65 m Distance between quadrupole and sextupole: 0.15 m Distance between dipole and sextupole: 0.356 Distance between quadrupole and dipole: 0.704 m (it includes BPM and dipole correctors)

dipoles = 2×2944

quadrupoles = 2944

sextupoles = 2632/4

DA at injection with multipole errors

Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be $\leq 5 \times 10^{-4}$

91km 60°/60° optics

Stable initial action @ 4500 turns (~15% tx 20 GeV)

Geometric emittance injected 1.27e-9 nm

Courtesy of F. Zimmermann and Jie Gao

FUTURE

CIRCULAR COLLIDER

	CT d	ipole	Iron-cor	e dipole
GFR=R26	28Gs	56Gs	28Gs	56Gs
B1/B0	-5.20E-04	-1.04E-04	-1.56E-03	-2.60E-04
B2/B0	4.73E-04	5. 41E-04	-2.03E-03	-2.03E-04
B3/B0	-7.03E-06 1.05E-04		3. 52E-04	1.76E-04
B4/B0	-9.14E-04	-3.66E-04	4. 57E-04	-1.83E-04
B5/B0	3.56E-05	-2. 38E-05	-2.38E-05	-3.56E-05
<u>B6/B0</u>	6.18E-04	2.16E-04	-3.09E-04	9. 27E-05

relative values @ R = 26 mm

60 seeds MadX Thin-Lens Tracking

Barbara Dalena

Ceal DA at injection with multipole errors

FUTURE CIRCULAR COLLIDER

20.0 w multipole errors w multipole errors $\beta_{x} = 79.5$ 40 17.5 15σ 15σ $\beta_y = 17.0$ 15.0 $D_x = 0$ 30 [^{12.5} [^{juj}] 10.0 DA_y [σ_{inj}] 00 7.5 5.0 $Q_x = 417.225$ 10 2.5 $Q_y = 413.29$ 0.0 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 Δp/p Δp/p 20.0 30 w multipole errors w multipole errors 17.5 15 σ 15 σ 25 15.0 20 [^{12.5} 10.0 75 $\mathsf{DA}_{\mathsf{y}} \ [\sigma_{inj}]$ 15 7.5 10 5.0 $Q_x = 416.565$ 5 2.5 $Q_{\gamma} = 413.595$ 0.0 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 Δp/p Δp/p

91km 90°/90° optics

Barbara Dalena

Ce2 Momentum detuning

FUTURE CIRCULAR COLLIDER

	Q	$\partial Q/\partial \delta$	$\partial^2 Q/\delta^2 \delta$	$\partial^3 Q/\delta^3 \delta$
x	.225	0	4155.317	-161460.363
У	.29	0	5244.035	66921.874
x	.225 (w/o sex)	-661.13	924.534	-569581.860
У	.29 (w/o sex)	125.94	1716.270	287914.529
x	.565	0	3940.796	192685.700
У	.595	0	5336.346	35042.450

FCC-ee tuning

Barbara Dalena

Optimizing momentum detuning with two sextupole families

Strategy:

- difficult to reduce $Q^{\prime\prime}$ without increasing $Q^{\prime\prime\prime}$ •
- Montague functions become more regular but higher •
- DA doesn't improve •

	Q	$\partial Q/\partial \delta$	$\partial^2 Q/\delta^2 \delta$	$\partial^3 Q/\delta^3 \delta$
x	.565	0	3940.796	192685.700
У	.595	0	5336.346	35042.450
x	.565 (2 sex fam)	0	1761.903	227601.518
У	.595 (2 sex fam)	0	5388.272	-178897.067

FUTURE

Cea Conclusions & Perspectives

► Iterate on HEB layout

- Improve superposition with collider with 10 m (< 10 m) shift at IPs
- Improve off-momentum DA for the 90°/90° optics
 - Octupoles ?
 - Phase advance between arcs?
 - Other strategy for sextupoles families optimizations (MOGA,...)?
- ► HEB optics repository and alternative optics
- Define tolerances and correctors for linear imperfections

Cea Multipoles field errors at injection (> b2)

Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be $\leq 5 \times 10^{-4}$

97km 60°/60° optics

Stable initial action @ 4500 turns (~15% tx 20 GeV)

Geometric emittance injected 1.27e-9 nm

Courtesy of F. Zimmermann and Jie Gao

	CT d	ipole	Iron-cor	e dipole
GFR=R26	28Gs	56Gs	28Gs	56Gs
B1/B0	-5.20E-04	-1.04E-04	-1.56E-03	-2.60E-04
B2/B0	4.73E-04	5. 41E-04	-2.03E-03	-2.03E-04
B3/B0	-7.03E-06	1.05E-04	3. 52E-04	1.76E-04
B4/B0	-9.14E-04	-3.66E-04	4. 57E-04	-1.83E-04
B5/B0	3.56E-05	-2.38E-05	-2.38E-05	-3.56E-05
<u>B6/B0</u>	6.18E-04	2.16E-04	-3.09E-04	9. 27E-05

relative values @ R = 26 mm

60 seeds

MadX Thin-Lens Tracking

C22 Amplitude detuning

30

 Q_x

 Q_y

ο

o

25

 $\mathsf{Q}_{X_{col}}$

 $Q_{y_{col}}$

Cea Equilibrium emittances

FUTURE CIRCULAR COLLIDER

1e-5

• Booster Equilibrium rms emittance ≤ collider

Beam Energy [GeV]	Eq. Emittance [nm rad] 60°/60°	Eq. Emittance [nm rad] 90°/90°	Eq. Emittance Collider [nm rad]	Eq. emittance Collider new [nm rad]
45.6 (Z)	0.235	0.078	0.24	0.71
80 (W)	0.729	0.242	0.84	2.16
120 (H)	4.229	0.545	0.63	0.64
175 (tt)	3.540	1.172	1.48	1.49

- \Rightarrow 60°/60° retained for Z and W operation (mitigation of MI and IBS)
- $\Rightarrow~90^{\circ}/90^{\circ}$ 100 m cell could gain a bit in momentum compaction at Z & W
- \Rightarrow 90°/90° required for H and ttbar final emittances

2 dipoles families optics

CIRCULAR

FUTURE

2 dipoles with two different curvatures, proposed for the electron-ion collider (**EIC**)

Damping time can be reduced by playing on the ratio between the two different fields.

Advantages:

- No impact on the layout
- Increase I2 without damping wigglers
- Higher dipole field at injection energy

Drawbacks:

- Different reference orbits ⇒ reduction of beam stay clear?
- More synchrotron radiation and in opposite direction of foreseen absorber (at injection)
 - \Rightarrow vacuum quality to be investigated

 $I_i = I_i(\mu_x, L_{cell}, \theta_c/2, a, b)$

Preliminary results of two dipoles families optics

FUTURE CIRCULAR COLLIDER

22/04/2022

Main Linear field errors (b1, b2) only

Main quadupoles : $b2 = 2 \times 10^{-4}$ relative random error Main Dipoles: $b1 = 1 \times 10^{-4}$ relative random error $b2 = -1 \times 10^{-4}$ relative systematic error + 10% random component \int *Courtesy of F. Zimmermann and Jie Gao*

Without orbit, beta-beating and dispersion correction:

FUTURE

COLLIDER

100 μm random quadrupole offset only (x,y)

Removing all other mis-alignment except for quadrupole offsets Reducing the randomly distributed offset values to $\pm 3~\sigma$ = 100 μm

Туре	Δx (μm)	Δy (μm)	ΔS (μm)	Δ Theta (μ rad)	Δ Phi (μ rad)	Δ Psi (μ rad)	Field Errors
Arc quad	100	100					
Arc sext							
Dip							
Girders							
BPM							

Without orbit, beta-beating and dispersion correction:

FCC-ee tuning

Barbara Dalena