Sammy Valder
SNEWS Collaboration Meeting
3rd August 2022

Introduction

In this talk:

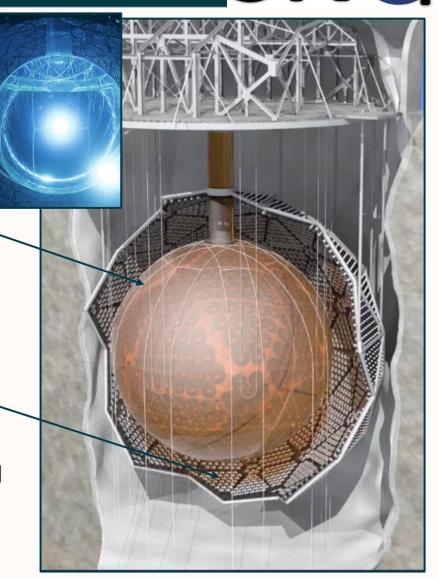
- The SNO+ Experiment
- How do Supernova Neutrinos interact with SNO+
- Event generator options
- Integrating SNO+ into sntools
- Validation study
- Current progress and future ideas


SNO+ Experiment

 Upgrade from Sudbury Neutrino Experiment (SNO) which won the Nobel Prize in Physics in 2015.

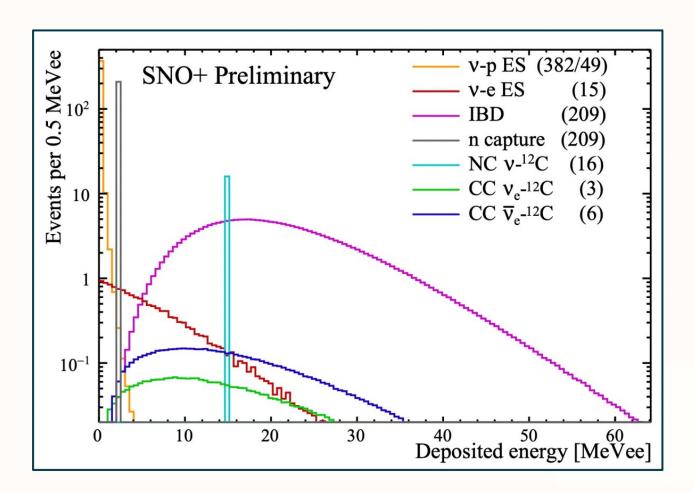
https://www.nobelprize.org/uploads/2018/06/mcdonald-lecture-slides.pdf

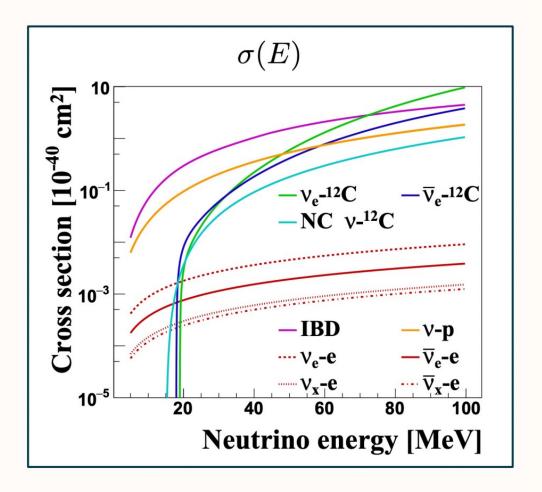
- Housed in SNOLAB, Sudbury, Canada.
- Multi-purpose neutrino experiment.
 - Primary research goal is neutrinoless double-beta decay $(0\nu\beta\beta)$.
 - Broad physics program includes, solar and reactor neutrino oscillations, geoneutrinos and supernova neutrino detection, nucleon decay, and dark matter detection
- Albanese, V., et al. "The SNO+ experiment." Journal of Instrumentation 16.08 (2021): P08059. https://arxiv.org/abs/2104.11687



SNO+ Experiment

- 2 km underground, ~6000 MWE
- 12 m diameter Acrylic Vessel (AV):
 - Filled with 780 tonnes of liquid scintillator:
 - LAB + [target of] 2 g/L PPO
 - To be loaded with ¹³⁰Te for double beta decay studies
- Surrounded by 7 kT of external ultra-pure water
- Viewed by ~9300 (8") PMTs mounted on a 17 m diameter PMT support structure (PSUP)
- AV is now full filled with liquid scintillator. Currently loading PPO, planned to start adding ¹³⁰Te at the end of 2022

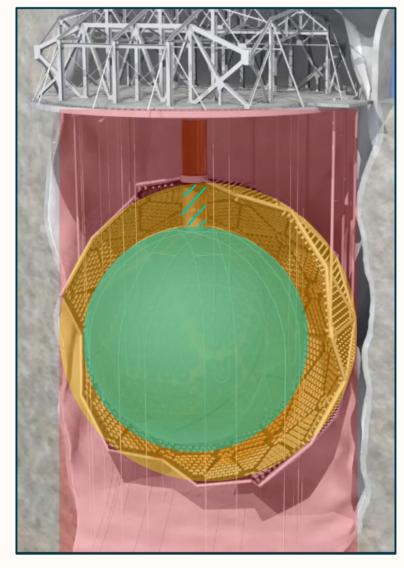



Interaction Channels in LAB

Supernova neutrino interaction channels available to SNO+ *inside* the AV

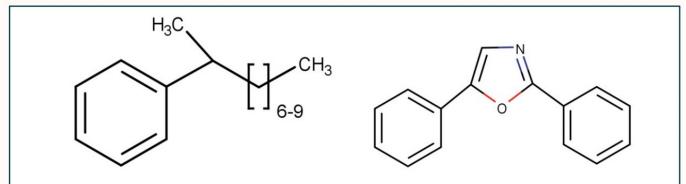
Cross-sections of interaction channels available to SNO+ *inside* the AV

Event Generators


- We have previously used SNUGen for a lot of the SN studies in SNO+
 - Relatively difficult to learn/use
 - Messy written by different people over long period of time
 - Limited in interaction channels and models available
- Therefore used an opportunity to re-evaluate the event generator we use, potential candidates:
 - SNOwGLoBES commonly used, not really an event generator
 - snewpy large array of models available, used by SNEWS, front-end for SNOwGLoBES
 - EstrellaNueva analytical techniques, not a bad word to say about this one;)
 - sntools previously used for HK/SK/WATCHMAN, utilises snewpy for flavour transformations and SN models (versatile), easy-to-use, good potential candidate to replace SNUGen

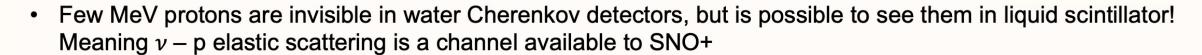
Let's explore sntools...

- Added SNO+ detector geometry into sntools:
 - Inner AV filled with liquid scintillator (see next slide) implemented, tested, and working! – Note neck is not implemented!
 - External water (inside PSUP) has been implemented, tested, and working!
 - External water (outside PSUP) not implemented... still thinking if this is needed
- Inner AV called using --detector SNOplusAV
- External water is called using --detector SNOplusEW
- Note: the addition of SNO+ led to two new shapes available in sntools called "sphere" and "hollow sphere"



- Previous liquid scintillator in sntools is approximated to CH₂
- This does effectively represent Liquid Alkylbenzene (LAB)
 - Added LAB C₆H₅C_nH_{2n+1}

- Alkyl part 9 < n < 14 (95% 9 < n < 12); averaged out to approximate* C_{16.65}H_{27.3} with mW = 227.5 g/mol
- Interaction modes: IBD, ν e elastic scattering, $\nu_{\rm e}$ CC 12 C, $\nu_{\rm e}$ NC 12 C, ν p elastic scattering (see next slide)


Figure 2: Structural formulae of the two primary components of the SNO+ scintillator cocktail. Left: LAB is a phenyl group attached to a carbon chain varying between 9–14 (>95% 9–12) carbons in length. Right: PPO is the fluorophore of the liquid scintillator cocktail.

*NB: GCMS to be run soon to get chain length proportions – can update once known

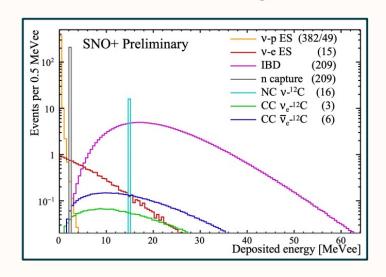
- ν p elastic scattering was not previously implemented in sntools
- NC interaction; available to all flavours of (anti)neutrinos

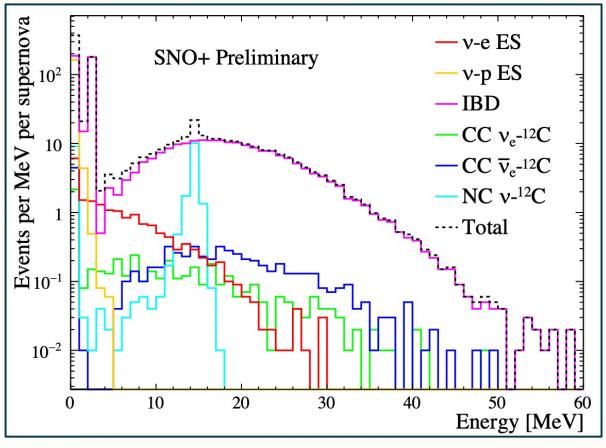
- The channel is as the proton recoil spectrum provides spectral information about the incoming neutrino
 - Can in theory measure the neutrino energy through this NC channel
- Total cross-section is about factor 3 smaller than IBD and is potentially the second largest signal in SNO+
- · This channel is available to other SN event generators e.g. SNUGen and EstrellaNueva
- Implemented (tested and working) in sntools in interaction_channels/ep.py ← Note: name to change
- Implementation largely based on J. Beacom, 2002: https://arxiv.org/pdf/hep-ph/0205220.pdf

Validation

	sntools	SNUGen	EstrellaNueva	SNO+ Preliminary
IBD	207.9 ± 1.4	212	203	209
es	14.0 ± 0.4	14	14	15
ер	377.5 ± 1.9	395	382	382
c12e	3.4 ± 0.2	-	5	3
c12eb	5.3 ± 0.2	-	6	6
c12nc	15.8 ± 0.4	-	16	16
Total	623.9 ± 2.5	621*	626	631

- Comparison of event rates expected per supernova for each topology in the SNO+ inner AV
- sntools appears to agree relatively well with SNUGen, EstrellaNueva, and the SNO+ preliminary plots
- Systematically lower event rates is due to the lower number of target nuclei when estimating the chemical composition of LAB
- Errors quoted here are statistical uncertainties (over 100 supernovae)
- Event rates are calculated using LS220_s27.0co SN model at 10 kpc


^{*} SNUGen does not include interactions on C12.



Event Generation

- SNO+ recently integrated with sntools¹ to simulate supernova neutrinos in the detector
- Generated events for 100 supernovae renormalise to predict sensitivity per example² supernova
- Run through detector simulation to include energy smearing and reconstruction
- Can measure NC ν -12C through 15.1 MeV excitation

¹ Migenda et al., (2021). sntools: An event generator for supernova burst neutrinos. Journal of Open Source Software, 6(60), 2877, https://doi.org/10.21105/joss.02877

 $^{^2}$ A. Mirizzi et al. Rivista del Nuovo Cimento Vol. 39 N. 1-2 (2016) [with 27M $_\odot$ progenitor CCSN with LS220 equation-of-state, at 10 kpc]

Current Status

- PR #42 SNO+ integration in sntools is almost complete
 - Comments mostly corrected, testing complete, documentation to be written
 - Apologies for delays situation less than idea, but aim to have this done by the end of the month
- Sntools is now becoming the default SN MC event generator for SNO+ (alongside EstrellaNueva)
 - Being used in directionality studies Josie Paton
 - Extracting time of core bounce Remington Hill
 - Investigating other potential uses, e.g. Flavor transformation, NMO, re-evaluation of SN sensitivities –
 Sammy Valder

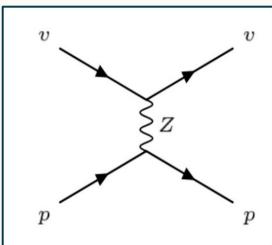
Future Plans:

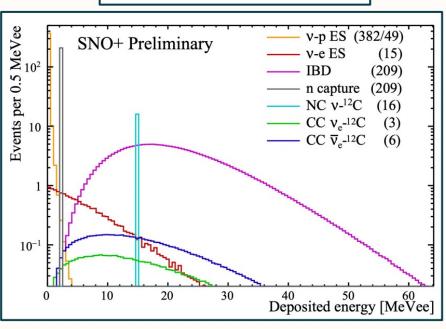
- Short term finish PR, fix any inevitable short term bugs
- Long term become default SN event generator for SNO+ (alongside EN), possibilities are almost endless!

Summary

- SNO+ is now filled with liquid scintillator which gives greater sensitivity to supernovae and access to new interaction channels
- The expected supernova signal at SNO+ is well understood
- SNO+ has been integrated within sntools, current validation studies and testing appear to show it's working as
 expected
 - PR to be completed asap (hopefully end of this month) essentially just documentation to be written
- Sntools is already starting to be used as an event generator for preliminary SN analyses in SNO+
 - With sntools' flexibility, the possibilities here are far and wide

Backups




Proton Scattering

- Few MeV protons are invisible in water Cherenkov detectors, but is possible to see them in liquid scintillator → <u>available to SNO+</u>
- Neutral current (NC) interaction → sensitive to <u>all</u> neutrino flavours
- Proton recoil spectrum provides spectral information about incoming neutrino → measure neutrino energy
- Difficult to detect
- Signal will be quenched in the detector
 - 382 events predicted[†], 49 events above 200 keV threshold after proton quenching
 - Second largest SN signal in SNO+

[†]27M_☉ progenitor CCSN with LS220 equation-of-state, 10 kpc away

Proton Scattering

ν – p elastic scattering implementation largely based on J. F. Beacom et al., Phys Rev D 66(3), 2002

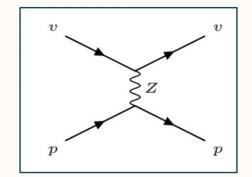
Coupling constants:

$$c_{\rm V} = \frac{1 - 4\sin^2\theta_{\rm W}}{2}$$

$$c_{\mathcal{A}} = \frac{g_{\mathcal{A}}(0) \cdot (1+\eta)}{2}$$

Differential cross-section: $\frac{d\sigma}{dT_{n}} = \frac{G_{F}^{2}M_{p}}{2\pi E_{c}^{2}} \left[(c_{V} + c_{A})^{2}E_{\nu}^{2} + (c_{V})^{2}(E_{\nu} - T_{p})^{2} - (c_{V}^{2} - c_{A}^{2})M_{p}T_{p} \right]$

 c_A is +ve (-ve) for refers to (anti)neutrinos

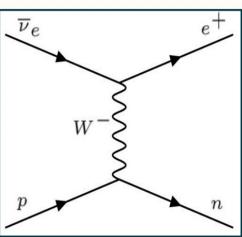

Recoil energy/angle of proton:
$$\cos heta_p \ = \ \frac{E_{
u} + M_p}{E_{
u}} \sqrt{\frac{T_p}{T_p + 2M_p}} \simeq \sqrt{\frac{M_p T_p}{2E_{
u}^2}}$$

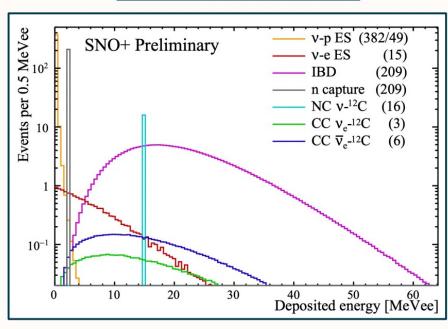
Maximum recoil energy of proton:
$$T_p^{max} = \frac{2E_{
u}^2}{M_p + 2E_{
u}} \simeq \frac{2E_{
u}^2}{M_p} \, .$$

Assuming $(E_{\nu} - T_{\rho})^2 \simeq E_{\nu}^2$ is a "very good" approximation at SN neutrino energies

Minimum energy of incoming neutrino:

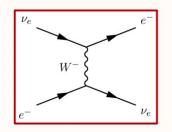
$$(E_{\nu})_{min} = \frac{T_p + \sqrt{T_p(T_p + 2M_p)}}{2} \simeq \sqrt{\frac{M_p T_p}{2}}$$
.

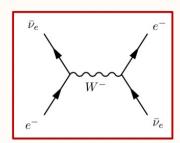


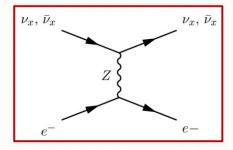

IBD

- Anti (electron)neutrino undergoes charged current (CC) interaction with proton to produce positron and neutron
- Outgoing positron detected as spectrum
- Neutron capture on proton produces 2.2 MeV delayed photon
 - Easy to tag
- Largest signal from supernovae in SNO+
 - 209 events expected from example[†] SN at 10 kpc

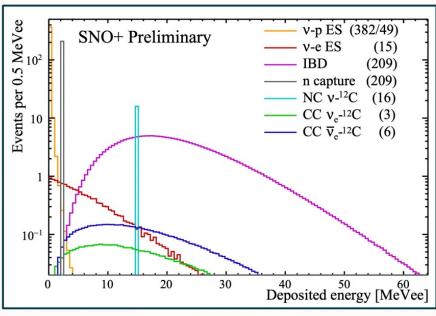
[†]27M_⊙ progenitor CCSN with LS220 equation-of-state







Other Interactions



- Flavour dependent crosssection
- ν_e and $\nu_e \rightarrow$ CC interactions
- $\nu_x \rightarrow NC$ interactions

$$\nu_e + ^{12}{\rm C} \to ^{12}{\rm N} + e^-$$

 $\nu_{\rm e}$ Charged Current on $^{12}{\rm C}$

$$\bar{\nu}_e + ^{12} \text{C} \rightarrow ^{12} \text{B} + e^+$$

 $\overline{\nu}_{e}$ Charged Current on ¹²C

$$\nu_e + ^{12} \text{C} \rightarrow ^{12} \text{C}^* \rightarrow ^{12} \text{C} + \gamma$$

 $\nu_{\rm x}$ Neutral Current on $^{12}{\rm C}$

- Distinctive 15.1 MeV excitation
- Cross-section measured by Karmen