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The Big Picture

» To compare with an observed SN neutrino signal (and design
detectors that detect SN neutrinos well) we want to calculate
the neutrino signal from supernova simulations

» Most simulations of supernova do not include the flavor mixing
of the neutrinos.

» What they provide are the outgoing neutrino spectra ©_ typically
with o = {e,x} at the edge of the simulation volume.

- In what follows we will model the neutrinos as all coming from a
neutrinobulb — a hard neutrinosphere defined by the radius R ..

- Apart from flavor mixing, we will assume these spectra are unchanged
since emission from the neutrinosphere R .
» What we want are the fluxes F_ of the neutrinos at Earth for a

SN at a distance d and including flavor transformation and
decoherence.



SNEWPY

> SNEWPY is a software package written in python that:

- generates a (time series of) neutrino fluence from a supernova
simulation at a given distance after convolving it with a prescription for
the flavor mixing.

- runs the fluence(s) through SNOwWGLOBES to compute the event rates in
neutrino detectors

- collates the output from SNOwGLOBES into the observable channels.

@ |t does not replace SNOwGLOBES, it complements it.



» The neutrino fluxes at Earth can be arranged into a vector

(F,(rs) (F,(r)

FF(I‘®): FM<I”@) FF(I”@): FM(I”@>

\F.(ro) \F.(ro)

» \We denote by a Greek index a generic flavor basis state.

* The flavor fluxes are a linear combination of the fluxes of the
mass states which can also be arrange in a vector.

(F,(r,)) (F,(r,))

Fylre)= F,(re) Fylre)= F.(ro)

\F3(re)/ \F3(re)/

> \We denote by a Latin index a generic mass state.




» The two vectors are related by a matrix D

FF(FEB):DFM(FEB) Fr(re)=DFy(rs)

* [gnoring Earth matter effects, the elements of D are the square
magnitudes of the vacuum mixing matrix U,

2
Dai_|UV,ai‘

» The components of the flux vector are the diagonal elements of
the flux matrix .7

F =c f d €2 pcosb
* with p the density matrix.

> The diagonal elements of .7 are the coherences which
disappear on the trip to Earth.



» The decoherence can be taken into account mathematically by

Fu=2 Vi)V |7 ulv))

]

Fu=2. Vi) (V|7 7))

» where |v,) and | v, ) are matter basis vectors

* The flux matrix is written as

1
4]‘[d2 (I)M(rGB)

» with @ the spectral matrix in the matter basis at Earth

yM(rEB>:



» The flavor basis spectra at the neutrino sphere are assumed to
be pure diagonal

(® (R,) 0 0
(I)F(Rv): 0 (I)M(Rv) 0
0 0 ®_(R,))
:; 5) (V| Ps(R,)
(& (R,) 0 0 |
(T)F<Rv): 0 (I)M(Rv) 0
| 0 0 @ (R,)



The spectra at Earth is related to the spectra at the
neutrinosphere

(I)M(rea):SM(I)M(Rv)S;r\/[
(T)M(r@):SM(T)M(RV)S;r\/I

with SM and §M the evolution matrices in the matter basis.

The matter basis spectra at the neutrinosphere are related to
the spectra of the flavor states

®,(R,)=U"®.(R,)U
(T)M<R ):UT(T)F(RV)U

with the U’s the matter mixing matrix at the neutrinosphere.
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» Putting it all together we get the final equation

1
il DIZ D, [Vi)|(vi|Su UT|Vﬁ>‘2
_ 1 —
Fr="s D;ﬁ: |71} (v [Su U*\vﬁ>|

> The flavor fluxes at Earth are linear combinations of the spectra
at the neutrinosphere.



Transition probabilities

» The relationship between fluxes at Earth and the intial spectra
can be simplified by introducing the transition probabilities.

» Assuming the spectra of u and t are identical and denoting

either as the
F,(rs)=

F,(re)=

F.(ro)=

F,(re)=

x flavor, these probabilities are defined to be

1

47 d°
1
4Ed2(pxeq)e(RV)-l-pxx(I)x(RV))
1 )
4ﬂdz(peed)e(Rv)+1;vex<1>x(1?v))

(PR )4D. D (R,)

(Pee®.(R,)+Ppuy @, (R, )]

» There are relationships between the p’s.



3 Flavors

» For three flavors it turns out we need just the elements of the
first row of the D matrix

D, ,=cos*f,,cos’0 ,,
D,,=sin’f ,cos’0,,
D,,=sin" 6,
» To compute the matter mixing matrices we need to construct
the neutrino Hamiltonian H at the neutrinosphere.
» The eigenvalues of H are k..

» The mixing matrix is the matrix which diagonalizes H.
- formulae exist e.g. Kneller & McLaughlin, PRD, 80 053002 (2009)
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» For the NMO the mixing matrices at the neutrinosphere are

0 0 1 (1 0 o
U=[1 0 0 U=[0 1 0
0 1 0 0 0 1

» while for the IMO the mixing matrices at the neutrinosphere are

U=|1 0 0 U=|1 0 0




Adiabtic Propagation

» Let’s consider the case of adiabatic propagation.

* In this case the S matrices are diagonal in the matter basis.

(eixn
S,=| 0
| 0

e

0

X 2

0

e

0
0

iX33)

'SM

» with the %'s phases which will turn out not to appear in the final

formulae.




» |nserting all the terms we find for the NMO

pee:DeS pex:]'_pee pee(:DeZ )
_(1+pee) _(1_pee) _ 1'I'l_jee
pxe_ 2 pxx_ D pxe— 7

» while for the NMO

pee:DeZ pele_pee pee:D

_[1+p,) (1-p.) _ _(1+Dp.)

pxe_ g pxx: g pxe_ 9,

pele_pee
_(1-Pe)
w5
pele_pee
_(1-Pe)
w



Nonadiabtic Propagation

» |et's consider a second example: nonadiabatic propagation
with complete swapping at the H resonance

» The S matrices are not diagonal in the matter basis.
» For the NMO the S matrix becomes (S is adiabatic)

[é 0 0
S={ 0 0 e
L0 e 0
» while for the IMO S changes to (S is adiabatic)

( 0 0 ei)_‘lB\
0 €% 0
e’ 0 0

sl
1




* |n this scenario we find for the NMO

pee:De2 pele_pee pee:Del pele_pee
_(1+pee) _(]-_pee) B (1+l_3ee) _ (1_pee)
DPye = 2 Pux— D Do — 5 D..= 5

» and for the IMO the transition probabilities end up being the
same as the NMO

- nonadiabatic evolution cannot distinguish the mass ordering

pee:De2 pele_pee pee:Del pele_pee

_(1+pee) _(1_pee) _ _(1+pee) _ _(1_pee)
pxe_ 2 D= g pxe_ 2 Pw= 2




> SNEWPY contains many more cases for the neutrino flavor
evolution including neutrino decay and four-neutrino cases.

- All the probabilities are static in time: the neutrino decay is energy
dependent but all others are not.

» Future extensions will add time and energy dependent transition
probabilities — e.g. for shock wave effects or Earth matter.

Any questions?
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