CEvNS detection and SNEWS implementation in XENONnT

Amanda (Depoian) Baxter adepoian@purdue.edu

SNEWS Collaboration Meeting August 4, 2022

XENONnT

- Water Cherenkov Muon Veto
- Gd-Loaded Water Neutron Veto
- Time Projection Chamber
 - 5.9 tons of Xenon
 - 1.5 m tall x 1.3 m diameter
 - **494 PMTs**

XENON Collaboration (arxiv: 2007.08796)

A = **131 for xenon**

This gives an enhancement in the scattering cross section for CEvNS interactions.

Analysis Channel	S1 Threshold	S2 Threshold	Detection Limitations
Standard WIMP	3 PE	200 PE	Energy threshold
2-fold analysis	2 PE	120 PE (4 e ⁻)	Energy threshold and backgrounds
S2-only analysis	0 PE	150 PE (5 e ⁻)	Backgrounds
		14 PE (1 e⁻)	

XENON Collaboration (arxiv: 1805.12562, 2012.02846, 1907.11485, 2112.12116)

Optimal analysis channel is the S2-only analysis.

A. Baxter (adepoian@purdue.edu)

Lang et al. (arxiv: 1606.09243)

Optimal analysis channel is the S2-only analysis.

But this channel is plagued with few-electron backgrounds.

Backgrounds plaguing low recoil energy regions

Backgrounds plaguing low recoil energy regions

SNEWS Implementation - Done

- We have GPS timestamps implemented and available.
- XENONnT is able to communicate with SNEWS via HOPSKOTCH and participated in the 1st fire-drill.
- Integrated all SNEWPY models into xenon waveform simulator.

SNEWS Implementation - In Progress

- Understanding the expected signal is under way.
- Writing script to continuously pull new data (every 21 s) and monitor for SNv.
- Optimizing cuts to reduce background.
- Defining threshold above background to trigger alarms.

SNEWS Implementation - To Be Completed

- Set up slow control alarms for internal alarms.
- Run script to continuously pull new data and monitor for SNv.
- Include veto detectors in trigger (charge-current interactions).
- Finalize alert procedure (do nothing!) for on-site shifters and experts.

Summary

- XENONnT will detect supernova neutrinos via CEvNS.
- Delayed electron backgrounds plague our S2-only analysis, but we have characterized these backgrounds to remove them.
- XENONnT will be listening and sending heartbeats soon (hopefully by the end of this week)!

