Triangulation and Neutrino Mass Ordering Determination with SNEWS

Vedran Brdar

Triangulation and Neutrino Mass Ordering Determination with SNEWS

Purdue University, August 2022

Supernova Triangulation

Delay between the arrival times of the neutrino pulse:

$$\Delta t = \frac{d}{c} \cos \theta$$

- A. Burrows, D. Klein, and R. Gandhi, Phys. Rev. D45, 3361 (1992)
 - J. Beacom, P. Vogel, Phys. Rev. D60 (1999)
- VB, Manfred Lindner, Xun-Jie Xu, JCAP 1804 (2018) 025
- N. B. Linzer and K. Scholberg, Phys. Rev. D 100, 103005 (2019)

A. Coleiro et al.,
 Eur. Phys. J. C 80, 856 (2020)

2/13

Uncertainties on SN Neutrino Arrival Times

- to determine δt we adopt χ^2 fit: $\chi^2(t_0) = 2 \sum_{i=1}^{i_{\max}} \left(\mu_i n_i + n_i \ln \frac{n_i}{\mu_i} \right)$ $N^i_{\alpha}(A, t_0) = A \int dE \int_{t_i}^{t_i + \Delta t} dt \, \sigma(E) \phi_{\nu_{\alpha}}(t - t_0, E)$; fluxes form Garching group
- we include a background µ_{bkg} 0.01 events per second for Super-K (rescaled for other experiments according to the fiducial volume)

Experiments	major process	target	$N_{\rm total}$	δt	$N_{\rm total}$ (BH)	δt (BH)
Super-Kamiokande [27]	$\overline{\nu}_e + p \rightarrow e^+ + n$	$32 \text{ kt } H_2O$	7625	$0.9 \mathrm{~ms}$	6666	$0.14~\mathrm{ms}$
JUNO [43]	$\overline{\nu}_e + p \rightarrow e^+ + n$	$20 {\rm kt}~{\rm C}_n {\rm H}_m$	4766	$1.2 \mathrm{~ms}$	4166	$0.19~\mathrm{ms}$
RENO50 [60]	$\overline{\nu}_e + p \rightarrow e^+ + n$	18kt C_nH_m	4289	$1.3~{ m ms}$	3749	$0.21~\mathrm{ms}$
DUNE [61]	$\nu_e+{}^{40}\mathrm{Ar} \to e^-+{}^{40}\mathrm{K}^*$	$40 \mathrm{\ kt} \mathrm{\ LAr}$	3297	$1.5 \mathrm{~ms}$	3084	$0.18~{\rm ms}$
$NO\nu A$ [62]	$\overline{\nu}_e + p \rightarrow e^+ + n$	15 kt C_nH_m	3574	$1.4~\mathrm{ms}$	3125	$0.24~\mathrm{ms}$
CJPL [63]	$\overline{\nu}_e + p \rightarrow e^+ + n$	$3kt H_2O$	715	$3.8~\mathrm{ms}$	625	$0.97~\mathrm{ms}$
IceCube [64]	noise excess	H_2O	$O(10^6)[65]$	$1 \mathrm{ms}$	$O(10^6)[65]$	$0.16~\mathrm{ms}$
ANTARES [66]	noise excess	H_2O	$\mathcal{O}(10^3)[67]$	$100 \mathrm{ms}$	$O(10^3)[67]$	$32 \mathrm{ms}$
Borexino [68]	$\overline{\nu}_e + p \rightarrow e^+ + n$	$0.3~{\rm kt}~{\rm C}_n{\rm H}_m$	71.5	$16 \mathrm{~ms}$	62.5	$5.5 \mathrm{~ms}$
LVD [69]	$\overline{\nu}_e + p \rightarrow e^+ + n$	$1 \ \mathrm{kt} \ \mathrm{C}_n\mathrm{H}_m$	238	$7.5~\mathrm{ms}$	208	$2.4 \mathrm{~ms}$
XENON1T [70]	coherent scattering	$2t X_e$	31	$27~\mathrm{ms}$	29	$10 \mathrm{~ms}$
DARWIN [57]	coherent scattering	$40t X_e$	622	$1.3~{ m ms}$	588	$0.7~\mathrm{ms}$

Triangulation Results

- ▶ time difference of SN neutrino arrival at two detectors located at $\vec{r_i}$ and $\vec{r_j}$ reads $t_{ij} = (\vec{r_i} \vec{r_j}) \cdot \vec{n} / c$
- for a pair of detectors $\chi^2_{ij}(\alpha, \delta) = \left(\frac{t_{ij}(\alpha', \delta') t_{ij}(\alpha, \delta)}{Max(\delta t_i, \delta t_j)}\right)^2$ and for more than two detectors involved in the analysis $\chi^2_{tot}(\alpha, \delta) = \sum_{i,j}^{i < j} \chi^2_{ij}(\alpha, \delta)$

arXiv > hep-ph > arXiv:2204.13135

High Energy Physics - Phenomenology

Timing and Multi-Channel: Novel Method for Determining the Neutrino Mass Ordering from Supernovae

Vedran Brdar, Xun-Jie Xu

One of the few remaining unknowns in the standard three-flavor neutrino oscillation paradigm is the ordering of neutrino masses. In this work we propose a novel method for determining neutrino mass ordering using the time information on early supervova neutrino events. In a cort-collapse supernova, neutrino are produced earlier than antineutrinos and, depending on the mass ordering, which affects the adiabatic flavor evolution, may cause earlier observable signals in *i*, detection channels than in others. Hence, the time differences are sensitive to the mass ordering. We find that using the time information on the detection of the first galactic supervox events at future detectors like DUKE, JUNO and Hyper-Kamiokank, the mass ordering can already be determined at 27 CL, while O(10) events suffice of the discovery. Our method dees not require hip-tabatistics and could be used within the supernova early warning system (SNEWS) which will have access to the time information on early supernova neutrino events recorded in a number of detectors. The method proposed in this paper also implies a crucial intergive between the mass ordering and the triangulation method for locating supernova.

Comments: 13 pages, 5 figures

High Energy Physics - Phenomenology (hep-ph): High Energy Astrophysical Phenomena (astro-ph.HE); High Energy Physics - Experiment (hep-ex)
 experiment (hep-ex)
 activity 2014, 2013; Charlen Physica - Experiment (hep-ex)
 activity 2014, 2014; Charlen Physica - Experimate (hep-ex)
 activity 2014, 2014; Charlen Physica - Experime

https://doi.org/10.48550/arXiv.2204.13135

Neutrino Fluxes

for DUNE that will be successful in detecting ν_e, more of early produced neutrinos will be detected if the mass ordering is inverted

Event Rates

		./		
	N ($t < 20 ms, NO$)	$N \ (t < 20 \text{ ms, IO})$	N (total, NO)	N (total, IO)
DUNE-ArCC	11.3	50.9	3285	3097
DUNE-eES	2.99	6.48	311	314
JUNO-IBD	14.2	27.2	6297	6194
JUNO-eES	4.11	8.50	362	369
JUNO-pES	18.8	19.2	3670	3798
SuperK-IBD	17.6	33.8	7830	7701
SuperK-eES	2.95	6.39	307	310
HyperK-IBD	206	395	91517	90011
HyperK-eES	34.5	74.7	3588	3628

$R(t) = N_{\text{target}}$	$\int \Phi(E_{\nu},t)\sigma(E_{\nu})dE_{\nu}$
./	

- for IO there are many more ArCC events in t < 20 ms window meaning that for IO the first event recorded in the detector will occur earlier
- no big difference between IBD event counts in t < 20 ms window when comparing NO and IO
- the time difference between the onset of neutrino events at DUNE and at a given IBD detector will be larger for IO

Triangulation and Neutrino Mass Ordering Determination with SNEWS

7/13

Time Window for the 1st Event Detection

▶ probability density function for t_{1st} : $p_{1st}(t_{1st}) = R(t_{1st}) \exp\left[-\int_{-\infty}^{t_{1st}} R(t)dt\right]$

▶ probability of t_{1st} in $[t_-, t_+]$ equals $1 - \alpha = 0.6827$ for 1σ CL

1st Event Detection: DUNE vs JUNO

the time difference between t_{1st} at DUNE and JUNO in the case of IO should be greater than ~ 10 ms

n-th Event Detection: DUNE vs JUNO

 \blacktriangleright for the first \sim 20 events, DUNE-ArCC events will appear significantly earlier than JUNO-IBD ones in the IO case

Significance for Neutrino Mass Ordering

• knowing only the timing of the first event 2σ statement can be made

- ▶ 5 σ with DUNE+Hyper-K (or DUNE+JUNO) requires O(10) events
- combining νe and νA channel leads to weaker results

Entanglement between Mass Ordering and Triangulation

- the method that guarantees 5σ CL result for the mass ordering involves the usage of event time differences between different detectors
- the measurement of these time differences should be corrected by the propagation time difference arising from different locations of detectors with respect to the SN
- such correction can be O(20) ms
- strategy: determine SN location => determine mass ordering
- \triangleright νe elastic scattering, triangulation and/or optical telescopes
- both SN location and mass ordering can be done with SNEWS!

Summary

- triangulation is a viable method and can be implemented in SNEWS
- a novel method for determination of neutrino mass ordering using SN neutrinos is proposed
- it requires the time information on the first couple of SN events in several upcoming large detectors
- for IO, there is a large time difference between the onset of SN events in DUNE and JUNO/Hyper-Kamiokande
- $\mathcal{O}(10)$ events is enough for a 5 σ result
- this method can be incorporated in SNEWS

BACKUP SLIDES

Triangulation and Neutrino Mass Ordering Determination with SNEWS

13/13

Purdue University, August 2022

Neutrino Luminosities and Mean Energies

SN1, SN2 collapse into a neutron star; SN3, SN4 black hole collapse

Results Using Princeton Group Fluxes

