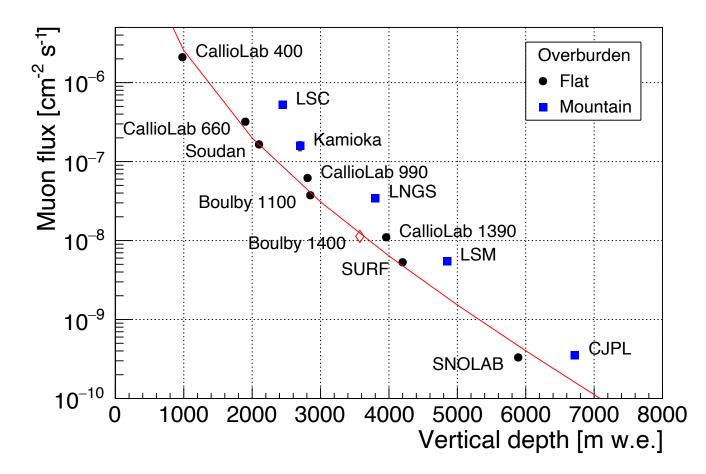


Muon-induced background in the nextgeneration dark matter experiment based on liquid xenon

V. A. Kudryavtsev University of Sheffield on behalf of the Boulby Feasibility Study team

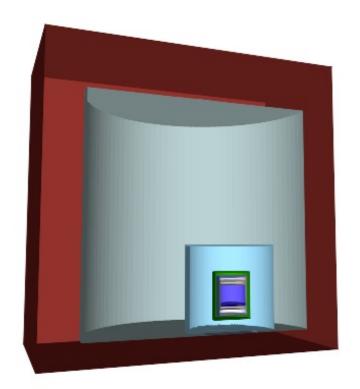

Outline

- Goals.
- Geometry in GEANT4.
- Muon model.
- Simulation runs: summary.
- Event selection.
- Results.
- Example events.
- Summary.
- All results are preliminary.

Goals

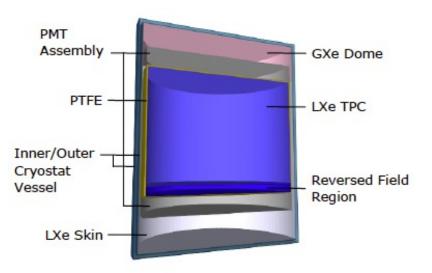
- Concern about muon-induced background.
- Determine the requirement on depth for a future G3 DM experiment.
- Work funded by STFC with a link to Boulby: is Boulby mine depth sufficient for the next generation DM experiment?
 - Hence, Boulby depth was chosen as a benchmark.
 - Results are relevant to other sites at a similar depth.
- Focus on LXe TPC.
- Create geometry model with reasonable level of details use the main materials and approximate layout.
- Use realistic muon flux and energy spectrum.
- Focus on neutron induced Xe recoils assumed that other energy depositions can be rejected using standard S2 vs S1 discrimination technique (S1/S2 were not produced in these simulations).

Underground labs

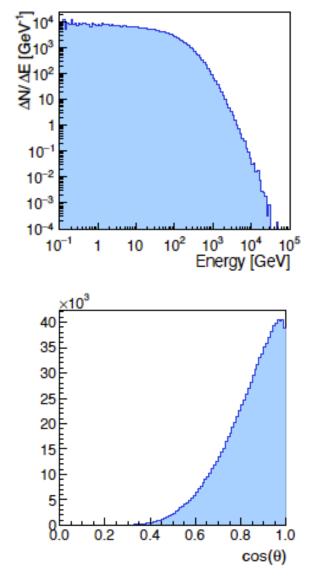

- Similar fluxes at Boulby and LNGS (about 10% difference).
- The curve shows simulations for 'flat' surface and 'standard' rock: Z = 11, A = 22.

DMUK meeting, 5 May 2022

Vitaly Kudryavtsev

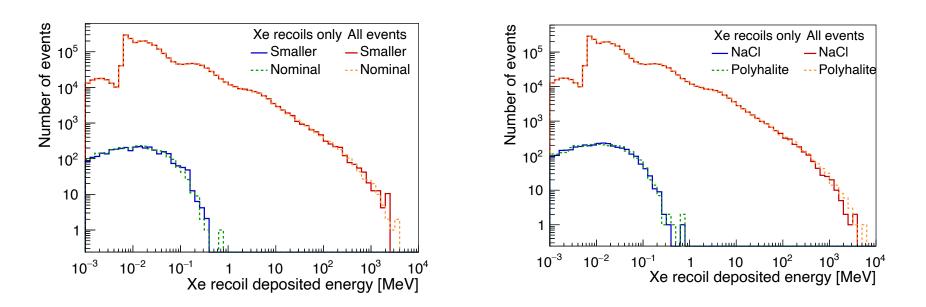

Geometry

- Cavern: cylindrical, 30 m height and 30 m diameter.
- Rock material: NaCl or polyhalite.
- Water tank (WT):
 - o 10.9 m height, 11.9 m diameter;
 - water shielding 3.5 m (top), 3.5 m (side),
 1.5 m (bottom).
- Steel plate underneath the WT
 - 30 cm (H), 6.9 m (D) additional shielding.
- Gd-loaded liquid scintillator (LS) 50 cm around the cryostat.
- Cryostat: 5 m height, 4 m diameter.
- Offset from centre, 5 m between the WT and the cavern wall.


Geometry: TPC

- Simplified main detector, based on the LZ design, scaled up – 71 t LXe in the TPC; about 100 t of LXe in total.
- Cryostat: 5 m height, 4 m diameter.
 - Cylindrical, no dome on top or bottom.
 - Two titanium vessels.
- Simplified PMT array (top and bottom)
 steel with 5% of standard density.
- LXe skin 8 cm thick, 70 cm beneath bottom PMT array; assumed to be instrumented with PMTs.
- TPC wall: PTFE, 3 cm thick.

Muon model


- Flux and energy spectrum calculated using MUSUN at current Boulby lab location (1100 m, 2850 m w. e.).
- Flux (through spherical detector):
 - 3.75×10^{-8} cm⁻² s⁻¹ from ZEPLIN-I/II/III measurements.
 - <*E*> = 261 GeV.
 - $< \theta > = 30.6^{\circ}.$
- Muons sampled on surface of a box in rock:
 - 7 m from the cavern on top, 5 m on the sides.
- Also potential site at 1400 m, 3575 m w. e.
 - Used same muon distributions.
 - Calculated flux: 1.13×10^{-8} cm⁻² s⁻¹.

Simulation runs

- GEANT4 v10.5, Shielding physics list.
- Two rock materials: NaCI, polyhalite.
- 800 million simulated muons each.
- 1100 m site in NaCI: detector exposure 29 years.
- 1400 m site in polyhalite: detector exposure 97 years.
- Two tests with smaller statistics:
 - 'Small' versus 'big' cavern no noticeable difference in Xe recoil spectra (no analysis cuts).
 - NaCl vs CaCO₃ as rock no noticeable difference in Xe recoil spectra (no analysis cuts).
- All results below are for a 'big' cavern as described on slide 5 and two types of rock: NaCl, polyhalite.

Test runs

No noticeable difference between small and big cavern, and between different rock compositions.

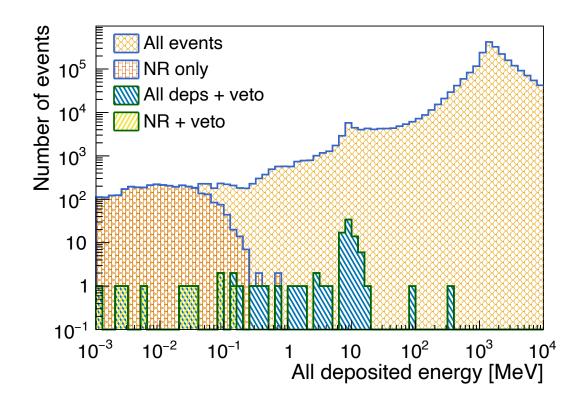
Analysis

- TPC energy depositions:
 - Summed over 1 ms window mimicking realistic readout times.
 - Recorded by type:
 - Xe recoils,
 - Muon,
 - EM (originated from either a photon or an electron),
 - Other.
- Veto energy depositions:
 - o Skin, LS, WT,
 - Summed over 1 µs window assumed PMT signal shaping time,
 - No distinction by type.
- Event information is stored together with the seed used to simulate this event.
 - Every event can be re-processed to get more detailed info.

Background events

TPC

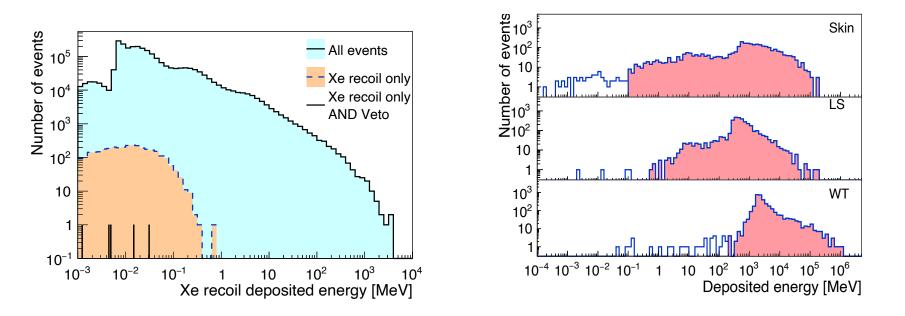
- Total Xe recoil energy >1 keV,
- Other depositions must be below threshold: (+ EM + Other/10) < 10 keV,
- Single Xe recoil above 1 keV, no other above 0.5 keV,
- At least 5 cm from TPC walls.


Veto

- o Anti-coincidence window: 0.5 ms.
- Thresholds:
 - Skin: 100 keV,
 - LS: 200 keV,
 - WT: 200 MeV.
- Scenario without LS
 - Emulated by treating LS and WT as a single volume,
 - Energy depositions in LS and WT summed (used WT threshold of 200 MeV).

DMUK meeting, 5 May 2022

Vitaly Kudryavtsev


Energy spectra of events in the TPC

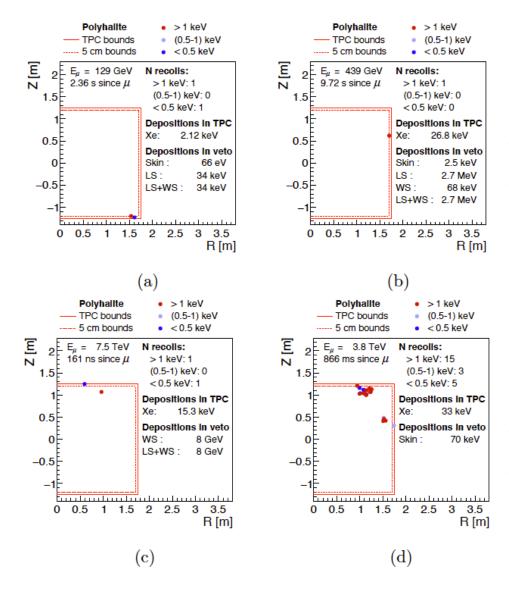
- Energy spectra of all events and of NR only, without and with veto cuts polyhalite.
- All (or almost all) events at low energies are NRs.

DMUK meeting, 5 May 2022

Energy spectra in the TPC and other volumes

- Left: energy spectra of Xe recoils in the TPC (at 1100 m depth NaCl).
 - All events Xe recoils may be accompanied by other energy depositions.
 - Xe recoil only events where only Xe recoils are present.
- Right: energy spectra of events in the skin, LS, and water tank.
- 5 events pass cuts on energy and veto in NaCl (27 without LS).
- 10 events pass cuts on energy and veto in polyhalite (38 without LS).

DMUK meeting, 5 May 2022


Vitaly Kudryavtsev

Results

Depth/Material	Equivalent exposure [year]	Preselection	Observed events	Rate [per 10 years]	$90\%{ m CL}$
	With liquid scintillator veto				
2850 m.w.e./NaCl	29	5	0		< 0.84
3575 m.w.e./polyhalite	97	10	1	0.10	0.01 - 0.45
	Without liquid scintillator veto				
2850 m.w.e./NaCl 3575 m.w.e./polyhalite	29 97	27 38	$\begin{array}{c} 0 \\ 2 \end{array}$	0.21	<0.84 0.05–0.61

- Limits are based on statistical uncertainties only.
- Systematic uncertainty is about ×2 due to neutron production models.
- Muon flux can be measured and calculated to 10% accuracy for exact lab location if rock composition, density and surface profile are known.
- Increase in neutron production with increasing depth (mean muon energy) is limited to about 7%.

Example events (in polyhalite)

- (a), (b) single NRs (delayed);
 2nd pulse in (a) may be missed.
 - No energy deposition above the threshold in WT if no LS.
 - (a) will not be identified as a background; potential signal.
 - (b) Potential signal if no LS.
- (c) rejected due to veto (WT/LS).
- (d) a multiple scatter event that will be rejected.
- Most events are from the production of ¹⁷N from ¹⁹F in PTFE (3 cm thick) followed by a β-n decay to ¹⁶O with a half-life of 4.2 s.

DMUK meeting, 5 May 2022

Summary and conclusions

- Background event rate for a next generation DM experiment (based on LXe) at about 3 km w. e. is low.
- For both locations the background rate is < 1 event in 10 years of running.
- Main background comes from PTFE activation with an emission of a neutron (a few seconds after a muon).
- Muon rate is expected to be about 200-300 per day in the TPC (at about 3 km w. e.). With 10 s dead time after a muon, we may lose 3-4% of efficiency (not obvious that this is needed).
- Limit PTFE use; currently assumed to be 3 cm wall thickness but could be thinner.
- Paper in preparation.