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Templates: a problem
● To do statistical inference with noble 

element detectors, we want to 
evaluate the likelihood

● Build detector response model to 
signal/background sources to do this

● Traditionally, likelihood evaluation 
done by approximating event 
probabilities with Monte Carlo 
templates in observable space

● This is okay if done per source in the 
space of 2 observables and with all 
nuisance parameters fixed

2



Templates: a problem

● Signal/background discrimination 
better at the top of the detector

● So rather than normalising signals to 
some fixed vertical position, better to 
include vertical position as an 
additional observable

● This means generating templates 
finely binned in this new coordinate

template for each 
vertical TPC 
position 
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Templates: a problem template for each 
vertical TPC 
position 

template stack 
for each electron 
lifetime ● What if we have 

some uncertainty in 
the electron lifetime

● We should include it 
as a nuisance 
parameter

● Now we are 
generating a stack 
of templates for a 
large number of 
electron lifetimes
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Template construction scales exponentially

Template space 
dimensionality

(S1,S2) + z + r + t + n1 + 
n2 + ...

z-dependence of 
(S1,S2)

r-dependence of 
energy 
deposition

z-dependence of 
electric field

...

r-dependence of 
electric field

...

t-dependence of 
electron lifetime

t-dependence of 
energy 
deposition

...

uncertainty in electron 
lifetime: nuisance 
parameter n1

uncertainty in g1: 
nuisance parameter n2

...

...
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Evaluating likelihoods directly

● Consider a simple model where some 
energy deposition E leads to some 
detected signal S via these processes - 
hidden variables a,b, nuisance 
parameters n1,n2,...

● To evaluate P(S|E) via template filling, 
we would have to do MC simulation via 
these distributions, repeated over all ni

● More direct way: perform the 
convolution of probability elements 
directly. Can represent this as a matrix 
multiplication

● This means you do a single calculation 
to evaluate the likelihood for some 
observed S, and given set of ni
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FlameNEST

● NEST is the state-of-the-art for Monte Carlo 
noble element yield physics, contains very 
good models for detector response

● FLAMEDISX is a proof-of-concept framework 
for evaluating liquid xenon TPC likelihoods in 
this way, using simplified models

● Uses TensorFlow: benefit from GPU 
acceleration, automatic differentiation

● FlameNEST is an encapsulation of the full 
NEST computation in the FLAMEDISX 
framework, allowing it be be used for a variety 
of detector conditions and for noble element 
physics beyond liquid xenon

energy -> 
electron/photon yields 

photon yield - > S1 
detector response

electron yield - > S2 
detector response
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Performance features

x3 

Bounds computation Variable stepping

Obtain tensor bounds for a block’s “in” dimension by 
constructing posterior PDF using bounds for “out” 
dimension, evaluated over a range of “in” values. 
Obtain sensible energy bounds for summing over the 
spectrum, per event.

Enable extension to higher energy sources by scaling 
probability elements evaluated at stepped hidden 
variable values, enabling smaller tensor construction. 
Do a similar stepped/scaled sum over the energy 
spectrum.
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Validations: mono-energetic
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Methodology

● Fill S1/S2 histograms for 
sources at fixed (x,y,z,t) 
using NEST

● Count events in each bin - 
‘MC differential rate’

● Compute expected events at 
the bin’s central (S1,S2) and 
the fixed (x,y,z,t) via 
FlameNEST - ‘FlameNEST 
differential rate’

● Check they agree within 
statistical + binning errors 
from the MC



Validations: flat spectra
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For general energy spectra, 
the biggest tradeoff between 
accuracy and performance 
comes from the stepping done 
over the source energy 
spectrum between bounds 
calculated per event, 
controlled by ‘max_dim_size.’

Compute the above accuracy 
metric for different choices of 
this to select sensible default 
choices.

Measuring the time to evaluate 
differential events of all 
non-empty bins.

ER

NR



A usage example: 2 parameter fit
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Outlook
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● Currently addressing reviewer comments on our paper, will update the arxiv 
version accordingly

● Big problem #1: current method for obtaining the poisson μ in an 
analytic/differentiable form has major flaws, working on an improvement 
(see backup slide 13)

● Big problem #2: because of the way the computation scales, non-asymptotic 
p-value evaluation will be tricky. Ideas: higher-order asymptotics, shortcuts 
to verifying Wilks’ theorem holds Bayesian methods

● Code publicly available on the FLAMEDISX GitHub repository: link

https://github.com/FlamTeam/flamedisx


Backup: poisson μ interpolation
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Current method: ‘cross interpolation’ 
between estimated μs. Fails badly with 
correlated parameters

New idea: calculate efficiency analytically/differentiably 
from one set of nuisance parameters, getting 
proportionality constant via μ estimation. Get 1st and 2nd 
derivatives, Taylor expand around here to get at other 
nuisance values


