Quantum interferometry for axion searches

Denis Martynov

DMUK Workshop 05/05/2022

Overview

- Dark matter
- Current status of the experiment
- Future plans

Thank you to STFC/EPSRC "Quantum Technologies for Fundamental Physics" programme

Matter – antimatter annihilation

No symmetry breaking =(

• CP-symmetry: Physics is the same if

- » Particles < = > antiparticles
- » Left handed < = > right handed particles
- Broken in weak interactions
- Expected to be broken in strong interactions
- Peccei-Quinn solution: introduce a new particle (axion)

Dark matter halo: axion-likeparticle?

Axion-photon interaction

- Dark matter density ~10⁻²¹ kg/m³
- Axion mass ~10⁻⁴⁷ kg, wavelength ~10⁸ m
- Axion field behaves classically

$$a(t) = a_0 \sin(\Omega_a t + \delta(t))$$
amplitude of the field axion mass phase of the field

• Coherence time is ~10⁶ periods

Axion-photon interaction

• Maxwell's equations

$$\nabla \cdot \vec{E} = -\frac{1}{f} \nabla a \cdot \vec{B}$$
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{B} = \frac{\partial \vec{E}}{\partial t} + \frac{1}{f} (\dot{a} \, \vec{B} + \nabla a \times \vec{E})$$

• Plane-wave solution

$$v_{\text{phase}} \approx 1 \pm \frac{a}{2kf}$$

Optical interferometer

- Resonate the pump and signal fields in the cavity
- Apply squeezed states of light to improve the shot noise

The sensitivity scaling

Sensitivity of the detector

- Table top setups can provide new limits
- The layout can be potentially scaled to km lengths

Phys. Rev. D 101, 095034

Current status:

- Laboratory
- Major equipment
- Vacuum tests

Laboratory: March 2021

Laboratory: Sep 2021

Laboratory: Dec 2021

Vacuum measurements

Experimental timeline

- Laboratory renovation
- Major equipment
- Design of the optical coatings
- Electronics and data acquisition
 - Procurement of consumables
 - Development of the data analysis pipeline
 - Production of the optical coatings
 - Installation of the setup
- First run
- Assembly of the source of squeezed states of light

Second run

Final word

sr.bham.ac.uk/qi/