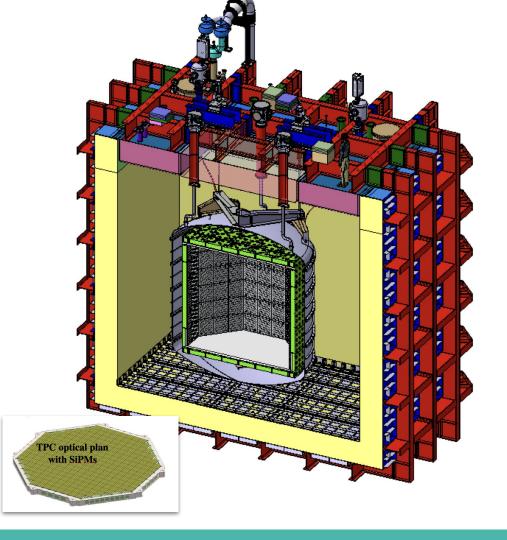

Status of the DarkSide-20k experiment

D.Santone, RHUL DMUK, 5/5/2022


DARKSIDE-20K: Global Argon Dark Matter Collaboration

DARKSIDE-20K: Overview

- Dual phase liquid Argon TPC: 50 tons of Underground Argon (UAr)
- Gadolinium loaded acrylic (Gd-PMMA) surrounding TPC wall for neutron capture
- Single phase Argon Veto detector: 35 tons of Underground Argon (UAr)
- Titanium vessel
- ProtoDUNE-like cryostat hosting 650 tons of Atmospheric Argon (AAr)
- TPC & veto equipped with 28 m² of Silicon Photomultiplier (SiPMs) readout

Inner Detector

- Octagonal TPC: 350 cm diameter
- Drift length: 348 cm
- Electron drift time > 5 ms
- Drift field: 2.8 kV/cm
- TPC anode/cathode: transparent pure acrylic coated with Clevios + TPB wavelength shifter (WLS)
- TPC lateral walls: grooves with Clevios for field shaping (no copper ring)
- Reflector + PEN (WLS) on TPC wall and Ti vessel enclosing veto
- Light yield in TPC: >10 phe/keV (S1), > 20 PE/e- (S2)

Underground Argon (UAr)

TPC and veto are filled with UAr in order to reduce Ar-39, which is produced in Atmospheric Argon by **cosmogenic activation** with activity ~ 1 Bq/kg. It is a beta emitter with **endpoint to 565 keV** and **half life of 269 years**.

39Ar deplaction factor: around 1400 Total UAr:

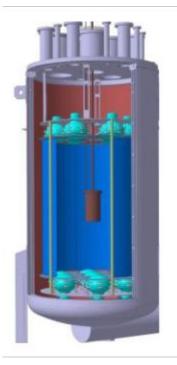
- TPC= 50 tons -> 36 Hz of Ar-39
- Veto = 35 tons -> 26 Hz of Ar-39

Mitigated with pulse shape discrimination:

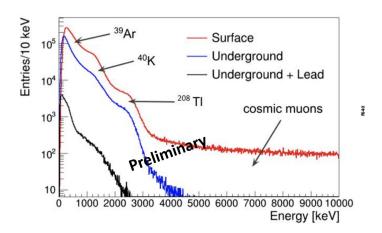
- Residual background is < 0.01 events
 / 200 tonne x year
- Dead time negligible

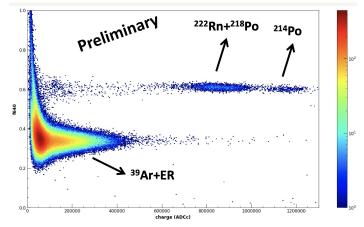
The path towards pure Ar: URANIA + ARIA + DArT

1. URANIA: UAr extraction

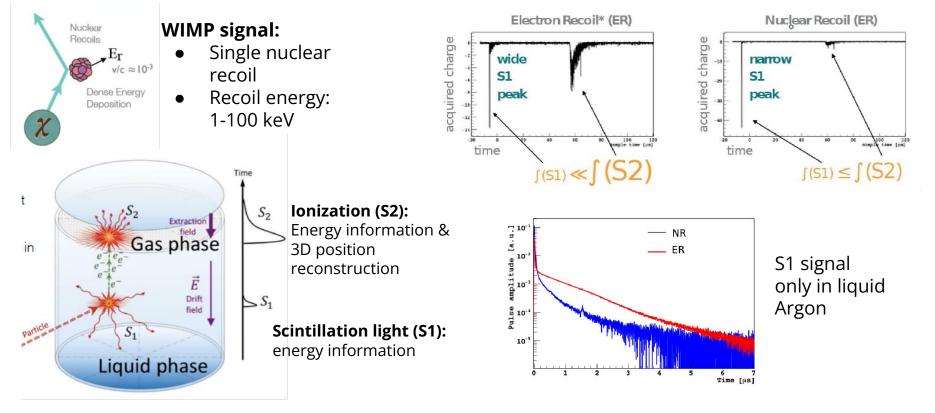

- CO₂ well in Cortez, CO, USA;
- Industrial scale extraction plant;
- UAr extraction rate: 250-330 kg/day;
- Purity 99.99%
- Plant ready to be shipped

2. ARIA: UAr purification


- Cryogenic distillation column in Sardinia (Italy)
- Chemical purification rate: 1 t/day
- Ar-39 separation power > 1000
- First module operated according to specs with Nitrogen in 2019
- Run completed with Ar at the end of 2020 *Eur.Phys.J.C* 81 (2021) 4, 359

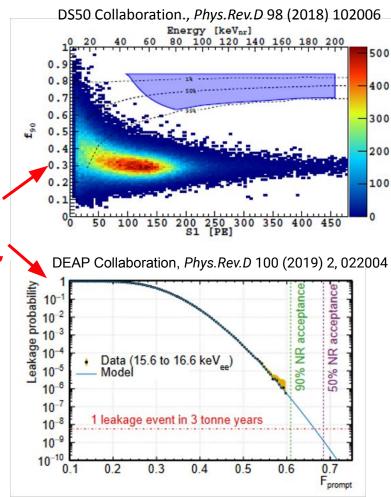


DArt



- Located at LCS, Canfranc
- Double phase TPC with active volume of 1.4 kg of liquid UAr
- Two 1 cm² SiPMs at the top & bottom
- External acrylic support
- Internal acrylic covered with TPB (WLS)
- Ar-39 depletion factor sensitivity: 6 x 10⁴ 90% C.L

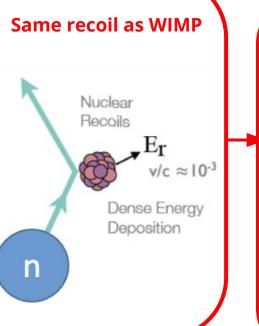
WIMP SEARCH: Signal


Background: Electron recoil

Produced by gamma, e-:

- U-238 & Th-232 decay chain: principally from Rn-222
- Ar-39 β-decay (reduced with UAr)
- Kr-85 β-decay
- Solar neutrino

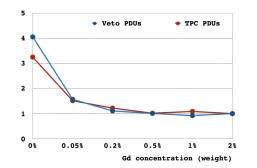
electronic recoils are rejected by Pulse shape discrimination, demonstrated by DS-50 & DEAP

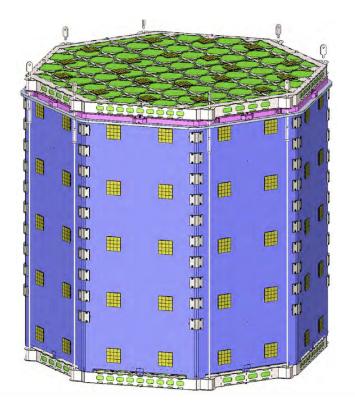

Fprompt parameter: PROMPT light PROMPT + LATE light

Background: Nuclear recoil

Produced by neutrons, alphas:

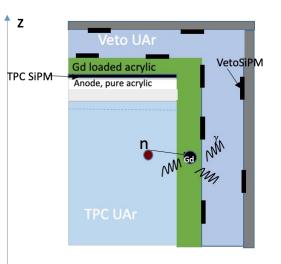
- Ur-238 and Th-232 contamination of detector material
- Cosmogenics interaction due cosmic ray
- (α,n) reaction in the detector material
- Spontaneous fission decay


Nuclear recoil reduction:


- Stringent material selection & radiopurity control
- Cut on multiple scatters event & r-z cuts-> fiducial volume = 20 tons
- Neutron veto

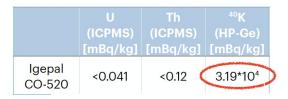
Neutron veto

Integrated TPC+veto system

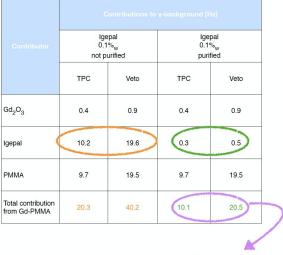

- TPC wall surrounding by Gd loaded PMMA for neutron capture
- Around TPC wall -> veto SIPMs for light detection
- Inside a Titanium vessel
- Reflector + PEN
- Veto SiPMs on TPC wall
- 1% fraction of Gd in PMMA

How does neutron capture?

- Neutron capture on Gd produce a high energy gamma cascade (8 MeV)
- Event with energy deposit of 50 keVee in the TPC OR 200 keVee in the veto tagged as neutron


Gd-PMMA: industrial production

Developed by DarkSide-20k


Sample produced in a industrial test @CLAX (Italy) -> homogeneity of 5% (ready for final production)

IGEPAL radiopurity problem -> high K-40 contamination

Purification & mass reduction to reduce gamma rate from K-40

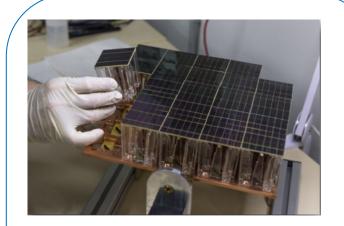


The γ bkg is safe!

Large area cryogenic SiPM light detectors

SPADs

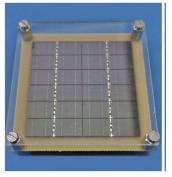
SPADs - Single Photon Avalanche Diodes: semiconductor devices based on a p-n junction, reverse biased well above breakdown voltage (operating in Gieger mode).


SiPMs - Silicon Photomultipliers: A single SiPM consists of ~94,900 SPADs. 24 SiPMs are grouped into tile (with an area of 25 cm2).

PDM - Photo Detector Module: The SiPM tile is combined with the front end board electronics to make a PDM. The signals from all SiPMs on the PDM are summed and read out as a single channel.

Quantity	Requirement
Breakdown voltage	26.8 +/- 0.2 V
SiPM response - recharge time	300 - 600 ns
Single Photoelectron (SPE) spectra	distinct PE
Gain	stable gain
Signal to noise ratio (SNR)	> 8
Dark count rate (DCR)	< 0.01 Hz/mm ² (7 Vov) < 0.1 Hz/mm ² (9 Vov)
Internal cross talk (CT) probability	< 33 % (7 Vov) < 50 % (9 Vov)
Afterpulsing (AP) probability	< 10 %

GROUPING SiPMs


First Motherboard (MB)

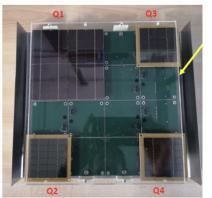
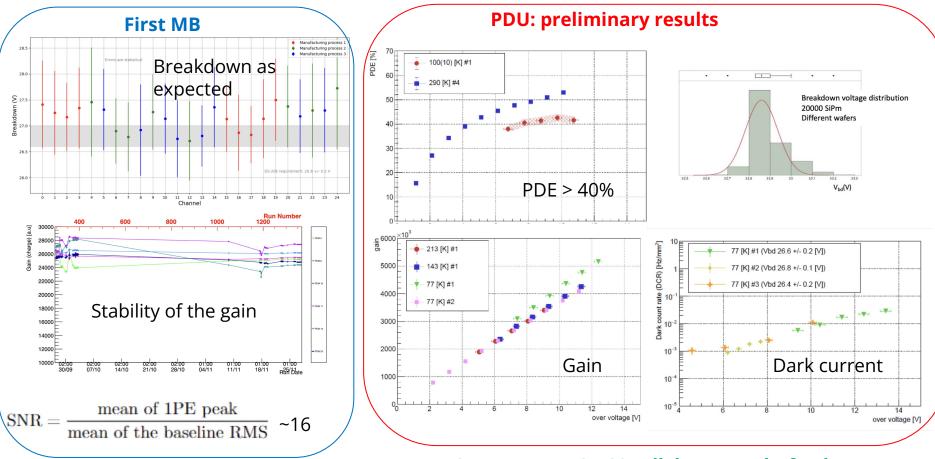

- The first prototype
- 25 Tiles
- Separate PCBs for various functions
- Thick structure (15 cm thick)
- Discrete elements amplifiers
- 25 outputs

Photo Detector Unit (PDU) now

Side 1: 24 SiPMs

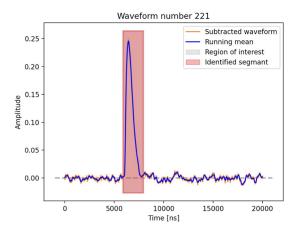
MB+: 16 tile+

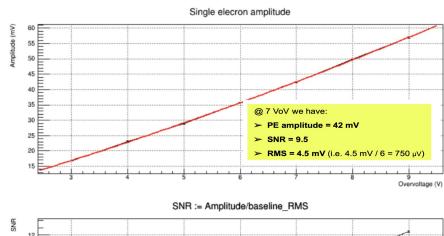


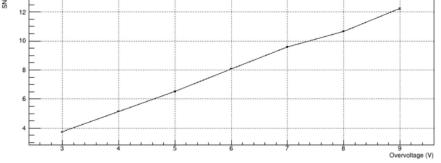
Side 2: Front-end electronics

- 16 Tiles
- Single PCB for Tile & amplifier+
- 1 large PCB for control signals
- Thin structure
- Discrete elements (for TPC) and ASIC (for Veto) amplifier
- Sum of 4 amplified tile signals
- 4 outputs

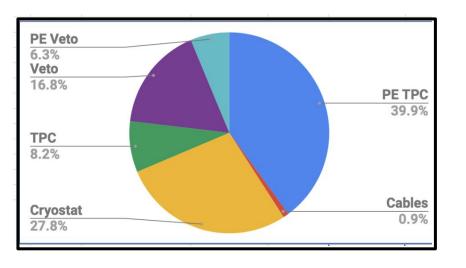
Performance in DarkSide PDU Test Facility

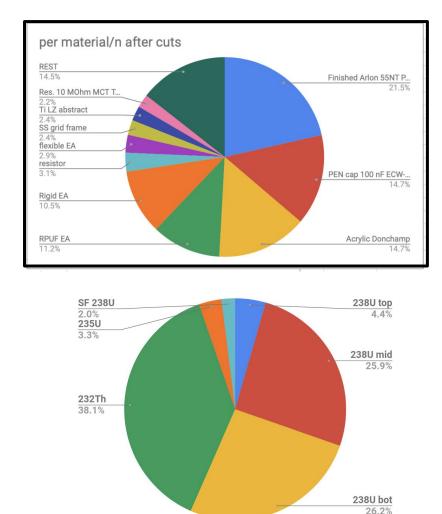

See more at IOP'22 talk by Zoe Balmforth


Veto Photon Detector Module

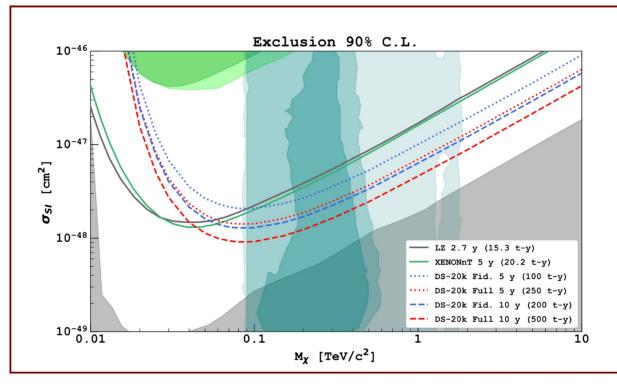

Same structure, ASICS as amplifier,

2500 veto PDMs to be produced by **DarkSide-UK** groups to instrument Inner veto detector



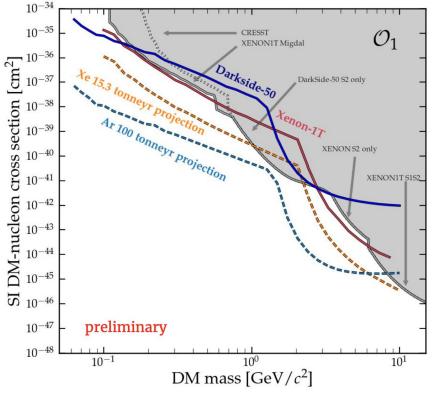


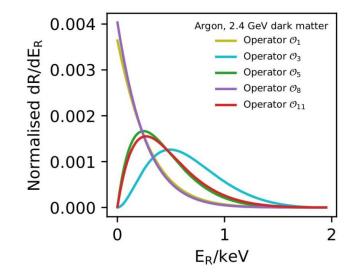
UK producing veto PDMs, and first veto PDU test planned this summer!


Background budget

- PE & cryostat dominant contribution to background
- Based on ICP-MS, Ge assay and Po-210 radiochemical extraction measurements
- 0.1 events after all cuts in a full exposure of 200 ton x year

DarkSide-20K projected WIMP sensitivity




•20 t Fiducial Mass analysis with 0.1 instrumental background events in 200 tonne-years

•50 t Full Mass analysis uses background distributions in profile likelihood ratio

Turquoise filled contours are from pMSSM11 model, E. Bagnaschi et al., Eur. Phys. J. C 78, 87 (2018).

Sensitivity to light dark matter

reinterpretation of published Ar and Xe results including Migdal effect (Ibe *et al.*), benchmarked against published results
analysis of future prospects for light dark matter, for EFT operators beyond *O1*

See more at IOP'22 talk by Ellen Sandford

Summary and Outlook

- The **Global Argon Dark Matter Collaboration (GADMC)** is a joint effort among all dark matter experiments with Ar target: ~400 collaborators from ~100 institutions towards **DarkSide-20k**
- DarkSide-20k is pushing the **state-of-the-art** in several directions: SiPM technology, underground argon extraction & purification, Gd-PMMA, background assay campaign
- DarkSide-20k is **in position to lead** the search for WIMPs, with complimentary reach above the LHC center of mass energy
- **Fundamental role played by UK groups** in producing the SiPM readout modules for the veto detector, which is key to achieving the <0.1 instrumental backgrounds to the dark matter search! And **expanding the reach beyond heavy WIMPs...**

