Status of the LZ Dark Matter Experiment

Dr. Sally Sh sally@physics.ucsb.edu

- atom. Most backgrounds are electron recoils.
- ionisation (S2) in GXe
 - and S2 signals

The LZ Collaboration

DMUK 2022

250 scientists, engineers, and technicians

The Sanford Underground Research Facility

Davis Campus

MAJORANA DEMONSTRATOR Neutrinoless double-beta decay LUXLZ Large Underground Xenon experiment First and second generation dark matter CUBED Center for Ultra-Low Background Experiments in the Dakotas Low background counting

> Ross Campus MAJORANA DEMONSTRATOR Electroforming laboratory

DMUK 2022 - Status of the LZ Dark Matter Experiment

Third generation dark matter experiment Third generation dark matter experiment T neutrinoless double-beta decay experiment • Experiment Hall

Long-Baseline Neutrino Experiment 4850 Level liquid argon Low Background Counting

• DIANA Dual Ion Accelerators for Nucle Dual Ion Accelerators for Nucle A850 Level DIANA Laboratory 4850 Level DIANA Laboratory

4

The LZ Detector

The LZ Detector

Calibration source deployment tubes (3 total)

17T Gd-loaded liquid scintillator

120 veto PMTs -

2T skin veto -

131 skin PMTs

60,000 gallons of ultrapure water

- 494 LXe PMTs

7T active LXe target

Neutron calibration conduit (2 total)

LZ Scale Up

Xenon

10T total Xenon, undergoes:

- Krypton removal at SLAC
 - Gas charcoal chromatography
 - Goal: 0.1 ppt ^{nat}Kr/Xe
 - Achieved: 0.11 ppq
- Online purification of GXe
 - Hot zirconium getter removes electronegative impurities
 - Full 10T purified every 2.4 days
- Radon removal
 - Inline radon removal system uses activated carbon trap, 10x reduction of radon in 1 pass
- Electron lifetime
 - Goal: 1 ms
 - Achieved >5 ms

Time (min)

Time Projection Chamber

- 2 PMT arrays of Hamamatsu R11410-22 PMTs (494 total)
- 4 electrodes/grids woven on specialized looms and passivated to reduce eemission*
- 57 field rings embedded in reflective PTFE →
 190 V/cm drift field
- TPC completed August 2019
- Inserted into ICV at surface assembly lab

- 2T of active xenon between the ICV and the TPC field cage
 - Optically isolated from TPC
 - 93 1" R8520 PMTs in ice cube trays at the top
 - 20 side + 18 dome 2" R11410 PMTs at the bottom
- Expected to be >95% **efficient** at tagging γ -rays

Titanium Vessels

ICV at the Surface Assembly Lab

Inner vessel installed in the water tank December 2019

DMUK 2022 - Status of the LZ Dark Matter Experiment

The LZ Outer Detector from an (α ,n) reaction in the PMTS

HT | 11|

10

It scatters from a Xe nucleus, causing a nuclear recoil inside the LXe detector

> γ-rays are emitted from the postcapture nucleus

γ's interact in the liquid
 scintillator, producing
 photons, which are
 detected by PMTs

Three Detector System

DMUK 2022 - Status of the LZ Dark Matter Experiment

14

Outer Detector

2 top vessels

TELEPERETEE

10 segmented acrylic vessels

3 bottom vessels

3 side vessels

17T Gd-loaded liquid scintillator

120 8" PMTs

Outer Detector Installation

Side vessel lowering into water tank

All acrylic vessels in place!

Post-acrylic cleaning yoga

PMT and tyvek installation

Top tank fill system installation

1

OD construction completed spring 2021

Dr. Sally Sha sally@physics.ucsb.edu

Calibration of LZ

Calibration Systems

 γ sources loaded in on upper deck and lowered to specified Z via computercontrolled motors

Photoneutron sources: YBe

> **3 external calibration** source tubes - neutrons & γ AmLi, ²⁵²Cf, ²²Na, ²²⁸Th...

> > 2 neutron conduits: DD neutrons, D₂O reflector neutrons

> > > DD neutron generator

Plasma viewing window

3 source tubes enter here and sit in vacuum space between **Outer and Inner Vessels**

Direct mode: monoenergetic 2.45 MeV neutrons from deuterium-deuterium

19

Mono-energetic ER peaks used to determine initial detector gains through a **Doke plot analysis**

DMUK 2022 - Status of the LZ Dark Matter Experiment

Outer Detector Calibration

DMUK 2022 - Status of the LZ Dark Matter Experiment

Cleanliness and Background Mitigation

Detector materials

- Radio-assay campaign
- gamma-screening
- ICPMS
- NAA
- Rn emanation
 - Four Rn emanation screening sites
 - Two portable Rn assay panels
 - Target Rn activity: 2 µBq/kg

Rn daughters and dust on surfaces

- TPC assembly in Rn-reduced cleanroom
- Dust < 500 ng/cm³ on all LXe contact surfaces
- Rn-daughter plate-out on TPC walls < 0.5 mBq/m²

Xenon contaminants

- ⁸⁵Kr, ³⁹Ar
- Charcoal chromatography @ SLAC
- Final natKr/Xe <300 ppq
- Cosmogenics and externals
- 4300 m.w.e. underground
- Instrumented Xe skin region
- GdLS outer detector
- High purity water shield

Cleanliness protocols

Radon reduction system at SURF

i ne

AC2

HPGe screening at Boulby

Charcoal chromatography columns at SLAC

ER Backgrounds:

- γ -rays & β -decays from ²³⁸U, ²³²Th chains
- ⁶⁰Co, ⁴⁰K
- Xenon lines
- ²²²Rn, ²²⁰Rn and ⁸⁵Kr in the LXe

NR Backgrounds

- Neutrons from (*α*,n) & spontaneous fission in detector components
- ⁸B solar neutrinos
- Wall background (mis-reconstructed ion recoils)

Key for reducing background:

- Fiducialisation (self-shielding)
- Single scatter cuts
- Energy cuts
- Dual veto system (skin and OD)

OD reduces NR backgrounds and allows maximal fiducial volume

ER backgrounds

Measuring LXe Backgrounds

DMUK 2022 - Status of the LZ Dark Matter Experiment

Outer Detector Backgrounds

measured

Measuring GdLS Internal Backgrounds

arXiv:1808.05595

Sensitive to **all** decays in the scintillator: α , β , γ Measured a huge range of contaminants, including some we didn't expect! ¹⁷⁶Lu, ¹⁴⁷Sm, $^{235}U! \rightarrow \text{more purification of Gd powder}$

arXiv:1904.02112 **Total** γ-flux $1.9 \pm 0.4 \gamma \text{ cm}^{-2} \text{ s}^{-1}$ Rate (Hz / keV) Nal detector 10 10-2 10⁻³ 1800 1400 1600

Measuring the Cavern Background

Sprayed concrete radioactivity found to dominate the cavern flux

Sensitivity & Physics Reach

LZ Sensitivity Projections

LZ Physics Reach

LZ physics reach extends beyond vanilla WIMPs:

- Solar axions
- Axion-like particles (ALPs)
- $2\nu\beta\beta$ of ¹³⁴Xe with competitive sensitivity to Ονββ
- Enhanced sensitivity to low mass DM through Migdal effect
- Leptophilic dark matter
- Neutrino magnetic moment
- Mirror dark matter

arxiv:2102.11740 arxiv:2104.13374

DMUK 2022 - Status of the LZ Dark Matter Experiment

29

Acknowledgements

- Black Hills State University
- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison

US UK Portugal Korea

Science and Technology Facilities Council

January 2021 Collaboration Meeting

- LZ is a multi-physics experiment, primed for detection of WIMPs
- Commissioning completed, currently taking science data, and extensive analyses underway
- Expected 40x improvement in sensitivity on current limits, sensitive to non-WIMP physics
- First science results expected this year!

Results from the LUX Experiment

Sally Shaw DMUK Meeting UCL, 18th January 2016

My last talk at DMUK just before I left the UK!

Matthew Kapust/SURF

FACEBOOK.COM/LZDARKMATTER

