
Tom Neep, on behalf of the MIGDAL collaboration Dark Matter UK, University of Birmingham May 5, 2022

Where are we?

X SM SM

- Direct dark matter searches have made great strides in excluding WIMP-like dark matter
- Increasing interest in pushing towards lower masses, O(100 MeV)

The Migdal effect

- Typically we assume that the electron cloud in an atom move instantaneously with a nuclear recoil
- In reality the electrons take a short amount if time to catch up with the recoiling nucleus
- This can cause ionisation and excitation of the atoms, emission of one or more Migdal electrons
- Electronic recoil detection increases the sensitivity of our detectors to light WIMPs
- First described by A. Migdal in 1939 A. Migdal, ZhETF, 9, 1163-1165 (1939), ZhETF, 11, 207-212 (1941)

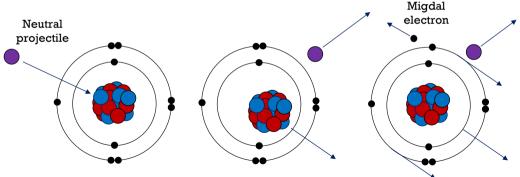


Figure from Tim Marley

The Migdal effect

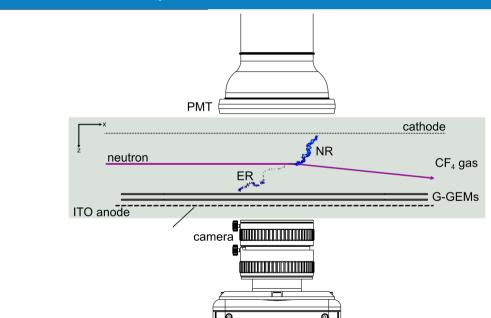
- The Migdal effect has been observed in:
 - $\alpha \operatorname{decay} \checkmark$
 - $\beta^- \operatorname{decay} \checkmark$
 - β^+ decay 🗸

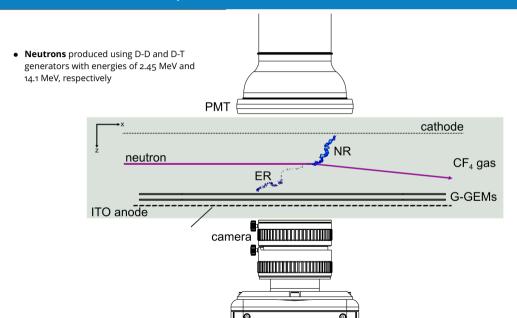
Phys. Rev. C 11 (1975), 1740-1745, Phys. Rev. C 11 (1975), 1746-1754

Phys. Rev. 93 (1954), 518-523

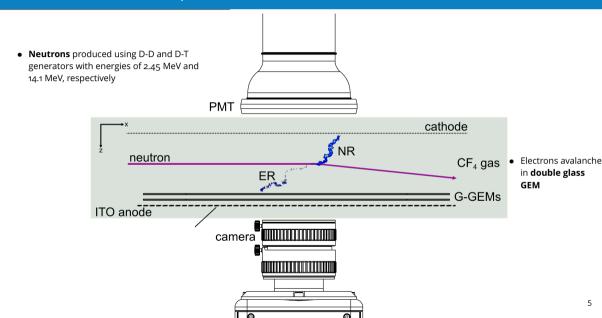
Phys. Rev. A 97 (2018), 023402

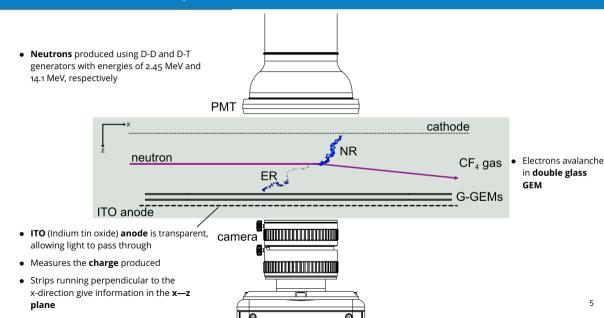
• However, it has not yet been observed in nuclear scattering, the key process we want to use it in

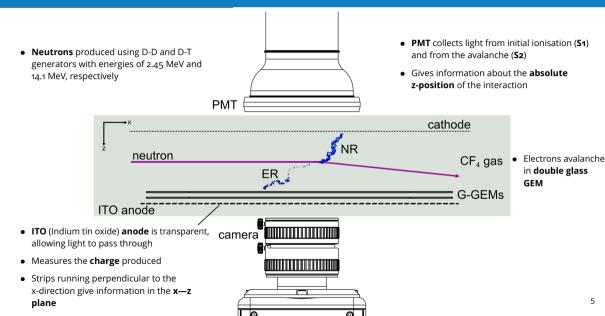

The Migdal effect

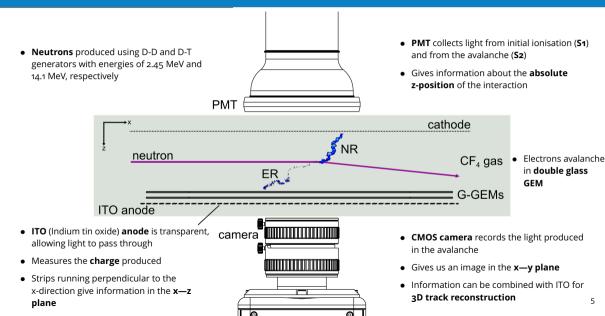

- The Migdal effect has been observed in:
 - α decay 🗸
 - $\beta^- \operatorname{decay} \checkmark$
 - β^+ decay 🗸
- However, it has not yet been observed in nuclear scattering, the key process we want to use it in

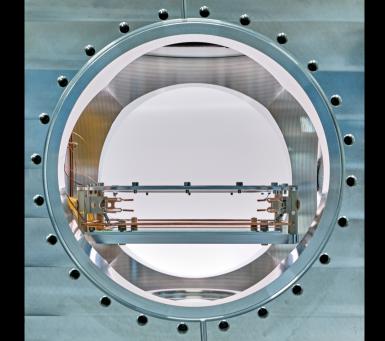
- The Migdal In Galactic Dark MAtter ExpLoration experiment aims to make an unambiguous observation of the Migdal effect in nuclear scattering using an optical time projection chamber
- Two phases:
 - 1. Measure the Migdal effect in pure **Carbon tetrafluoride** (CF₄)
 - 2. Observe the Migdal effect in CF₄ + **other gas (Ar, Xe, ...)** mixtures
- **Observe** the Migdal effect in the regime relevant for DM searches
- **Searching** for nuclear recoils with accompanying electronic recoils from the same vertex

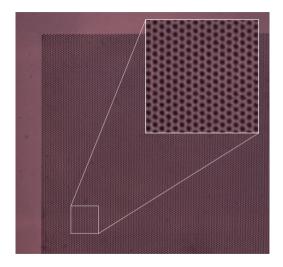


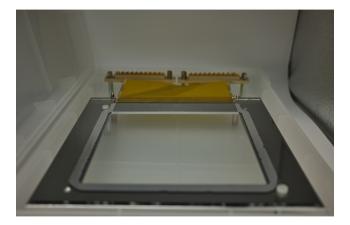

Phys. Rev. C 11 (1975), 1740-1745, Phys. Rev. C 11 (1975), 1746-1754 Phys. Rev. 93 (1954), 518-523 Phys. Rev. A 97 (2018), 923402

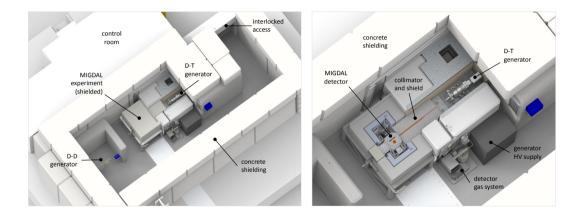




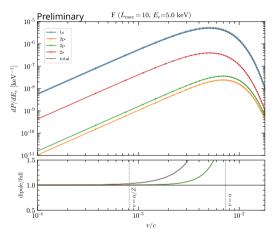

5



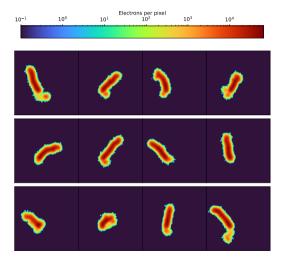



- Gas Electron Multipliers are micropattern gas detectors
- Many tiny holes, 170 μ m in diameter, 280 μ m pitch
- Glass sandwiched with copper (0.55 mm thick glass with 2 μ m of copper on either side)
- Voltage applied across dielectric, results in strong electric field inside holes where **Townsend avalanche** occurs
- We use a double GEM

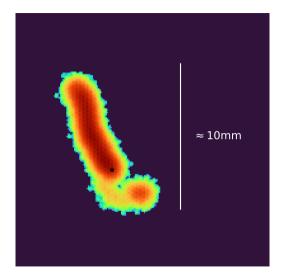
ITO anode


- 120 Indium tin oxide (ITO) strips with 60 readout channels allow us to readout the charge produced
- Strips o.6 mm wide with a o.8mm pitch
- Digitised with 2 ns sampling rate
- Charge arrival times give us information about the depth of the track in the z-direction
- Crucially, the anode is **transparent** so that light produced in the avalanche can be recorded by the CMOS camera

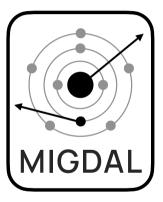
The NILE facility at ISIS, RAL


- One billion neutrons per second produced by the D-D generator
- + Expect \approx 60 nuclear recoils per second in the TPC
- Migdal event rate $\mathcal{O}(10 \text{ events})$ per day
- Challenging!

Plot from Chris McCabe

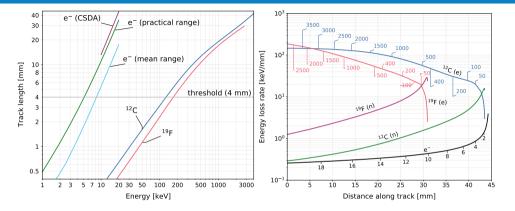

End-to-end simulation

- We have a full end-to-end simulation combining:
 - DEGRAD
 - SRIM/TRIM
 - Garfield++
 - Magboltz
 - Gmsh/Elmer & ANSYS
- Plots show Migdal-like events with a 250 keV NR and a 5 keV ER
- Studying various methods to identify Migdal events (dE/dx, track lengths, etc)
- Currently estimate \approx 75% Migdal identification efficiency for the most promising energies

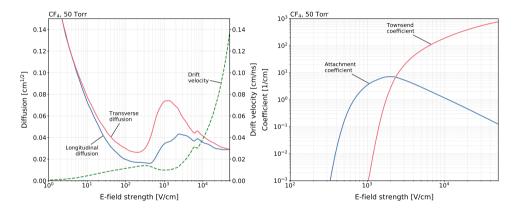


End-to-end simulation

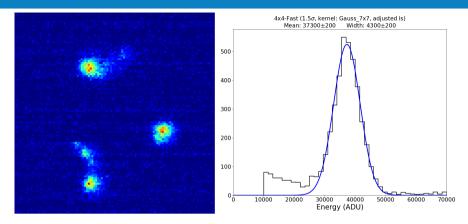
- We have a full end-to-end simulation combining:
 - DEGRAD
 - SRIM/TRIM
 - Garfield++
 - Magboltz
 - Gmsh/Elmer & ANSYS
- Plots show Migdal-like events with a 250 keV NR and a 5 keV ER
- Studying various methods to identify Migdal events (dE/dx, track lengths, etc)
- Currently estimate \approx 75% Migdal identification efficiency for the most promising energies



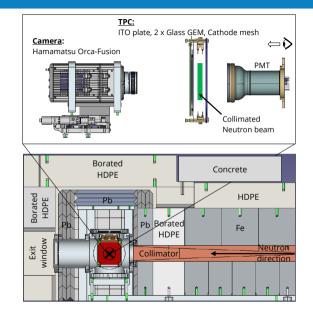
- The **MIGDAL** experiment aims to perform an unambiguous observation the Migdal effect
- Design of the experiment is complete
- End-to-end simulation chain in place
- Detector is constructed and is being tested
- Calibration with ⁵⁵Fe and fission-fragment sources are about to begin
- Runs with D-D generator neutrons will begin very soon!



Tracks


- We can exploit different track lenghts and dE/dx to distinguish nuclear and electronic recoils
- Nuclear recoils deposit more of their energy at the beginning of the track, while electrons deposit more energy at the end of the track

Gas properties


- Gas properties for CF₄ at 50 Torr, calculated with Magboltz
- Electric fields chosen to minimize diffusion and attachment

GEM tests @ CERN

- Successful tests have been performed using glass-GEMs by the GDD group at CERN with CF4 at 50 Torr
- Tracks from $^{55}{\rm Fe}$ (5.9 keV $\gamma)$ decays are well resolved with an energy resolution of 27%
- Track head and tail clearly resolved for low energy electrons

Experimental setup

