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Where are we?
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e Direct dark matter
searches have made
great strides in
excluding WIMP-like
dark matter

e Increasing interest in
pushing towards lower
masses, O(100 MeV)
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The Migdal effect

o Typically we assume that the electron cloud in an atom move instantaneously with a nuclear recoil
e In reality the electrons take a short amount if time to catch up with the recoiling nucleus

e This can cause ionisation and excitation of the atoms, emission of one or more Migdal electrons
e Electronic recoil detection increases the sensitivity of our detectors to light WIMPs

e First described by A. Migdal in 1939 4. wiigdal, zhET, o, 163-1165 (1930, ZhETF, 11, 207-212 (1941
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The Migdal effect

e The Migdal effect has been observed in:

o « decay v Phys. Rev. C 11 (1975), 17401745, Phys. Rev. C 11(1975), 1746-1754
e 3~ decay v/ Phys. Rev. 93 (1954), 518-523
[ ] ,B+ decay v Phys. Rev. A 97 (2018), 023402

e However, it has not yet been observed in nuclear scattering, the key process we want to use it in
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e However, it has not yet been observed in nuclear scattering, the key process we want to use it in

e The Migdal In Galactic Dark MAtter ExpLoration experiment aims to make an
unambiguous observation of the Migdal effect in nuclear scattering using an ’ \

optical time projection chamber

e Two phases:

1. Measure the Migdal effect in pure Carbon tetrafluoride (CF,)
2. Observe the Migdal effect in CF4 + other gas (Ar, Xe, ...) mixtures

e Observe the Migdal effect in the regime relevant for DM searches MIGDAL
e Searching for nuclear recoils with accompanying electronic recoils from the ;J
same vertex




The MIGDAL detector: An Optical TPC
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e Neutrons produced using D-D and D-T
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e ITO (Indium tin oxide) anode is transparent,
allowing light to pass through

e Measures the charge produced

e Strips running perpendicular to the
x-direction give information in the x—z
plane




The MIGDAL detector: An Optical TPC

) e PMT collects light from initial ionisation (S1)
o Neutrons produced using D-D and D-T and from the avalanche (S2)
generators with energies of 2.45 MeV and

14.1 MeV, respectively e Gives information about the absolute
z-position of the interaction
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The MIGDAL detector: An Optical TPC

) e PMT collects light from initial ionisation (S1)
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e ITO (Indium tin oxide) anode is transparent, camera
allowing light to pass through

e CMOS camera records the light produced
in the avalanche

e Measures the charge produced ) ) .
e Gives us animage in the x—y plane

e Strips running perpendicular to the
4p ) 'g p. P L e Information can be combined with ITO for
x-direction give information in the x—z J.4 T AN

plane / I ™ 3D track reconstruction 5
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Gas Electron Multipliers

Gas Electron Multipliers are micropattern
gas detectors

Many tiny holes, 170um in diameter, 28oum
pitch

Glass sandwiched with copper (0.55 mm thick
glass with 2 um of copper on either side)
Voltage applied across dielectric, results in
strong electric field inside holes where
Townsend avalanche occurs

We use a double GEM



ITO anode

e 120 Indium tin oxide (ITO) strips
with 60 readout channels allow us
to readout the charge produced

e Strips 0.6 mm wide with a 0.8mm
pitch
e Digitised with 2 ns sampling rate

e Charge arrival times give us
information about the depth of the
track in the z-direction

e Crucially, the anode is transparent
so that light produced in the
avalanche can be recorded by the
CMOQOS camera
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End-to-end simulation

Electrons per pixel
102

10° 10*

o We have a full end-to-end simulation
combining:

e DEGRAD

e SRIM/TRIM

o Garfield++

[ ]

[ ]

Magboltz
Gmsh/Elmer & ANSYS
e Plots show Migdal-like events with a 250 keV
NR and a 5 keV ER

e Studying various methods to identify Migdal
events (dE/dx, track lengths, etc)

e Currently estimate ~ 75% Migdal
identification efficiency for the most
promising energies
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Summary

e The MIGDAL experiment aims to perform an unambiguous
observation the Migdal effect

e Design of the experiment is complete
e End-to-end simulation chain in place
e Detector is constructed and is being tested

e Calibration with 5>Fe and fission-fragment sources are about to

o MIGDAL

e Runs with D-D generator neutrons will begin very soon! k J




Back-up
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e We can exploit different track lenghts and dE/dx to distinguish nuclear and electronic recoils

o Nuclear recoils deposit more of their energy at the beginning of the track, while electrons deposit
more energy at the end of the track



Gas properties
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e Gas properties for CF, at 50 Torr, calculated with Magboltz

e Electric fields chosen to minimize diffusion and attachment



GEM tests @ CERN

4x4-Fast (1.50, kernel: Gauss_7x7, adjusted Is)
Mean: 37300£200  Width: 4300+200

10000 20000 30000 40000 50000 60000 70000
Energy (ADU)

e Successful tests have been performed using glass-GEMs by the GDD group at CERN with CF4 at 50

Torr
e Tracks from >>Fe (5.9 keV ~) decays are well resolved with an energy resolution of 27%

e Track head and tail clearly resolved for low energy electrons



Experimental setup

TPC:
ITO plate, 2 x Glass GEM, Cathode mesh
Camera: = b
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