

IFAST

ACCELERATORS FOR THE ENVIRONMENT

université

esi

icht

ENVIRONMENTAL IMPACT OF AIR POLLUTION

GAS ELECTRON BEAM IRRADIATION

Process	Energy Dissipation (% of Input Power)		
N ₂ Vibrational	5.3		
$N_2 (A^3 \Sigma_u^+)$	1.1		
N ₂ (Β ³ Π _g)	1.8		
N ₂ Dissociation	24.0		
N ₂ Dissociative Ionization	13.9		
N ₂ Molecular Ionization	28.3		
O ₂ Vibrational	0.6		
$O_2(a^1\Delta_g)$	0.7		
O ₂ Dissociation	8.3		
O ₂ Dissociative Ionization	2.9		
O ₂ Molecular Ionization	2.8		
Others	10.3		

 $\begin{array}{l} 4.43 N_2 \stackrel{100 \text{ eV}}{\longrightarrow} 0.29 N_2^* + 0.885 N(^2\text{D}) + 0.295 N(^2\text{P}) + \\ 1.87 N(^4\text{S}) + 2.27 N_2^+ + 0.69 N^+ + 2.96 e^- \ (1) \end{array}$

 $5.377O_2 \xrightarrow{100 \text{ eV}} 0.077O_2^* + 2.25O(^1\text{D}) + 2.8O(^3\text{P}) + 0.18 \text{ O}^* + 2.07O_2^+ + 1.23O^+ + 3.3e^- (2)$

 $7.54CO_2 \xrightarrow{100 \text{ eV}} 4.72CO + 5.16O(^{3}P) + 2.24CO_2^{+} + 0.51CO^{+} + 0.07C^{+} + 0.21O^{+} + 3.03e^{-}$ (4)

$NO + O(^{3}P) + M \rightarrow NO_{2} + M$

REMOVAL OF NO_Y

NO OXIDATION

 $O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$ $NO + O_3 + M \rightarrow NO_2 + O_2 + M$ $NO + HO_2^* + M \rightarrow NO_2 + OH^* + M$ $NO + OH^* + M \rightarrow HNO_2 + M$ $HNO_2 + OH^* \rightarrow NO_2 + H_2O$ **NO₂ REMOVAL** $NO_2 + OH^* + M \rightarrow HNO_3 + M$

 $HNO_3 + NH_3 \rightarrow NH_4NO_3$

H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on Radiation Technology for Environmental Conservation TRCE-JAERI, Takasaki, September/October 1993, 99-104

REMOVAL OF SO₂

RADIOTHERMAL

 $SO_{2} + OH^{*} + M \rightarrow HSO_{3} + M$ $HSO_{3} + O_{2} \rightarrow SO_{3} + HO_{2}^{*}$ $SO_{3} + H_{2}O \rightarrow H_{2}SO_{4}$ $H_{2}SO_{4} + 2NH_{3} \rightarrow (NH_{4})_{2}SO_{4}$ $SO_{2} + 2NH_{20} \rightarrow (NH_{3})_{2}SO_{2}$ $(NH_{3})_{2}SO_{2} \rightarrow (NH_{4})_{2}SO_{4}$

THERMAL

1. H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on Radiation Technology for Environmental Conservation TRCE-JAERI, Takasaki, September/October 1993, 99-104

^{2.} A.G. Chmielewski: Nukleonika **45(1)** (2000) 31

REMOVAL OF NO_X WITH AMMONIA

 $NO + N(^{4}S) \rightarrow N_{2} + O$ $NO_{2} + N(^{4}S) \rightarrow N_{2}O + O$ $N(^{2}D) + NH_{3} \rightarrow NH^{*} + NH_{2}^{*}$ $NO + NH_{2}^{*} \rightarrow N_{2} + H_{2}O$ $NO_{2} + NH_{2}^{*} \rightarrow N_{2}O + H_{2}O$ $NO + NH^{*} \rightarrow N_{2} + OH^{*}$ $NO_{2} + NH^{*} \rightarrow N_{2}O + OH^{*}$

H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on Radiation Technology for Environmental Conservation TRCE-JAERI, Takasaki, September/October 1993, 99-104

EPS KAWĘCZYN

chi

EPS POMORZANY

PROCESS VESSEL AND ELECTRON BEAM SCANNING

SOx & NOx REMOVAL

ESP BYPRODUCT COLLECTOR AND FERTILIZER

ehtj

acenaphtene

anthracene

fluoranthene

pyrene

benzo(a)pyrene

dibenzo(a,h) anthracene

Scheme of reaction pathways of 1,4-DCB decomposition and products formation

OIL FIRED BOILER

21

GENERAL VIEW OF THE PILOT PLANT

- 1- stack of F 1001 boiler
 2- boiler F1001
 3-flue gas duct
 4-control room
 5-humidification unit
 6-pilot plant stack
- 7 bag filter
- 8 insulated duct part
- 9 cyclone
- 10 ammonia storage and injection unit
- 11 EB mobile unit

Andrzej G. Chmielewski, Bumsoo Han: Electron Beam Technology for Environmental Pollution Control, Top Curr Chem (Z) (2016) 374:68

EMISSIONS FROM DIESEL ENGINES MOUNTED ON SHIPS

*****Two stroke Diesel up to

81 MW

***6** to 14 pistons

(each 1820 dm³)

Heavy oil

Consumption 250 ton

fuel/day

Typical off-gases –

13 % O₂, 5.2% CO₂,

5.35% H₂O,

1500 ppmv NOx,

600 ppmv SOx,

60 ppmv CO,

HYBRID SOLUTION FOR NO REMOVAL IS BASED ON THE PROCESS CHEMISTRY

Back reactions !

NO + O = NO₂, $k = 3.0 \times 10^{-11}$, NO₂ + O = NO₃, $k = 2.2 \times 10^{-11}$, O + NO₂ = O₂ + NO, $k = 9.7 \times 10^{-12}$, O + NO₃ = O₂ + NO₂, $k = 1.7 \times 10^{-11}$.

Critical reactions !

OH + NO = HNO₂, $k = 3.2 \times 10^{-11}$, OH + NO₂ = HNO₃, $k = 6.0 \times 10^{-11}$,

CONCEPTUAL SCHEME OF THE INSTALLATION USING EB TECHNOLOGY FOR SOx AND NOx REMOVAL AS APPLIED ON BOARD

PRINCIPLES OF WASTEWATER TREATMENT WITH ELECTRON BEAM

PROCESS CHEMISTRY AND BIOCHEMISTRY

eht,

UV VS EB

UV-radiation of aqueous solutions Electron beam irradiation of aqueous solutions

$$O_{3} \xrightarrow{h_{V}} O + O_{2}$$

$$O + H_{2}O \longrightarrow H_{2}O_{2}$$

$$H_{2}O_{2} \longrightarrow HO_{2}^{\ominus} + H^{\textcircled{o}}$$

$$O_{3} + HO_{2}^{\ominus} \longrightarrow OH$$

$$H_{2}O_{2} \xrightarrow{h_{V}} 2 OH$$

Radiation is absorbed by solutes not water! Always just one source for OH (O_3 and H_2O_2 , resp.).

$$H_{2}O \xrightarrow{e^{\ominus}} \begin{cases} H_{3}O^{\oplus}; OH^{\ominus} \\ \hline OH; e_{\Re}^{\ominus}; H \\ H_{2}; O_{2}; H_{2}O_{2} \end{cases}$$
$$O_{3} + \begin{cases} e_{\Re}^{\ominus} \\ H \\ H_{2}O_{2} \end{cases} \rightarrow OH$$

Radiation is absorbed by water not by solutes! Two sources for OH (water radiolysis and O₃ decomposition).

SHIPYARD REMONTOWA SA

BALAST WATER DISCHARGE

- BALLAST WATER DISCHARGE TYPICALLY CONTAINS A VARIETY OF BIOLOGICAL MATERIALS, INCLUDING PLANTS, ANIMALS, VIRUSES, AND BACTERIA. THESE MATERIALS OFTEN INCLUDE NON-NATIVE, NUISANCE, EXOTIC SPECIES THAT CAN CAUSE EXTENSIVE ECOLOGICAL AND ECONOMIC AQUATIC DAMAGE TO ECOSYSTEMS, ALONG WITH SERIOUS HUMAN HEALTH ISSUES INCLUDING DEATH.
- A) VIBRIO CHOLERAE (01 1 0139)
 LESS THAN 1 CFU (COLONY
 FORMING UNIT CFU) PER 100 ML
 OR LESS THAN 1 CFU PER 1 GRAM
 (WET MASS) ZOOPLANKTON
 SAMPLE;
- B) **ESCHERICHIA COLI** LESS THAN 250 CFU IN 100 ML;
- C) ENTEROCOCCI LESS THAN 100
 CFU IN 100 ML.

Severity of Water Shortage in the World

SCHEME OF A MUNICIPAL WATER TREATMENT PLANT

IS APPICATION OF ELECTRON ACCELERATORS FOR WASTEWATERTRETMENT IN INDUSTRIAL SCALE FEASBLE ?

PENETRATION OF ELECTRONS VS. ACCELERATING ENERGY

Electron Energy	Max. range in air	Maximum range in water		
(MeV)	(m) (20°C, 1atm)	(mm)		
10	43.1	49.8		
1	4.08	4.37		
0.1	0.13	0.14		

POWER OF ACCELERATORS APPLIED IN INDUSTRY

Plant	Beam energy	Power	
	(keV)	kW	
Flue gas, EC Kawęczyn, PL	600	2 x 50	
Flue gas, EC Pomorzany,PL	600	4 x 300	
Wastewater, Deagu, ROK	1000	400	
Guanhua Knitting Factory, POk		7 x	

WASTEWATER EB TREATMENT PLANT ROK

WASTEWATER EB TREATMENT PLANT CHINA

30 000 m³ / day recycling of the water in textile industry (COD) of the wastewater dropped from 200 mg/L to less than 50 mg/L the project will save 4.5 million tons of water annually.

PATOGENS TO BE REMOVED

PATHOGENIC BACTERIA ACCEPTABLE CONTENT

SPECIES OF PARASITES WHICH HAVE TO BE DETECTED:

- IN POLAND ONE PATHOGENIC
 BACTERIA SPECIES IS CONSIDERED:
 SALMONELLA
- NONE LIVING CELLS OF SALMONELLA CAN BE DETECTED IN 100G SAMPLE OF MUNICIPAL SLUDGE

- ASCARIS SP. HUMAN PARASITIC ROUNDWORM
- TRICHURIS SP. HUMAN WHIPWORM
- TOXOCARA SP. ANIMAL (MOSTLY CATS AND DOGS) PARASITIC WORMS
- PARASITES AND EGGS ACCEPTABLE

CONTENT = 0

FIS INSTALLATION USED FOR THE FLOW IRRADIATION OF SEWAGE SLUDGE CONNECTED TO AN ILU-6 ELECTRON ACCELERATOR. SAMPLE OF SEWAGE SLUDGE SEALED IN A POLYETHYLENE BAG IRRADIATED BY AN ELEKTRONIKA 10/10 ELECTRON ACCELERATOR.

BACTERIA & LIVING EGGS OF HELMINTHS

Dose (kGy)	Detected Species	Result (CFU)	Dose (kGy)	Detected Species	Result (Number of Living Eggs)
0	Escherichia coli, Salmonella spp. Clostridium perfringens	6.2×10^4 9.2×10^2 1.1×10^2	0	<i>Ascaris</i> spp. <i>Trichuris</i> spp. <i>Toxocara</i> spp.	21 9 3
2	Escherichia coli, Salmonella spp. Clostridium perfringens	9.8×10^{3} 1.3×10^{2} 0.9×10^{2}	2	<i>Ascaris</i> spp. <i>Trichuris</i> spp. <i>Toxocara</i> spp.	16 4 1
3	Escherichia coli, Salmonella spp. Clostridium perfringens	1.4×10^{2} 0.4×10^{2} ca.0.2 × 10 ²	3	<i>Ascaris</i> spp. <i>Trichuris</i> spp. <i>Toxocara</i> spp.	4 none detected none detected
4	Escherichia coli, Salmonella spp. Clostridium perfringens	none detected none detected none detected	4	<i>Ascaris</i> spp. <i>Trichuris</i> spp. <i>Toxocara</i> spp.	none detected none detected none detected
5	Escherichia coli, Salmonella spp. Clostridium perfringens	none detected none detected none detected	5	<i>Ascaris</i> spp. <i>Trichuris</i> spp. <i>Toxocara</i> spp.	none detected none detected none detected

DECOMPOSITION OF DICLOFENAC IN SEWAGE FROM MUNICIPAL WASTEWATER TREATMENT PLANT USING IONIZING RADIATION

DCF is one of the most commonly used non-steroidal anti-inflammatory drugs (NSAID), and its average consumption is 0.33 ± 0.29 g/person/ye & & & UKLEONIKA 2021;66(4);201-206

HYBRYD BIOGAS - EB SYSTEM

Advantage of proposed solution:

- Environmental friendly technology
- Biogas production is disposal of problematic wastes
- Production of renewable power through combined heat and power cogeneration
- Production of microbiologically safe organic fertilizer due to electron beam hygenization
- Technology can be applied in any place with sufficient biomass resources while there is no need for external electric energy supply

Funding projects

IFAST

 I.FAST - Innovation Fostering in Accelerator Science and Technology, Grant Agreement No 101004730. & Ministry of Education and Science co-financing grant

Tango 2 (TANGO2/341079/NCBR/2017) entitled "Plasma technology to remove NOx fromoff-gases" NCBR NCN
 INNOship "Eko dok" POIR.01.02.00-00 00000 18 HDesign and verification on a pilot scale environmental states in the interacted with

the floating dock, the system of collection and itreatment of ballast water and sludge from the ship and technological waters from the ship hull cleaning process, using onlying radiations for the utilization of pollutants" NCBiR

8

Entrony Your