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@ ATHENA detector overview

© Sub-detectors

© Muon detection

© Quarkonium reconstruction
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Introduction

o This is a very quick overview (very limited time to prepare)
@ Based on ATHENA proposal and responses to DPAP questions

o Used information from the proposal submitted here:
[https://indico.bnl.gov/event/13614/]

@ Intended as a reference for the discussion
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ATHENA detector overview
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Table 1.1: Complete list of ATHENA subsystems in the main detector ordered from small to large radii (barrel) and increasing distance from the jZ>
interaction point (forward and backward regions). The PID range in momentum is quoted for 30 separation. -
m
i
Detector Purpose Technology Acceptance PID Range (GeV/c) m
Si-Tracker Disks Tracking 6 disks of MAPS 11<n<375 3
o
% | Tracking Rings (MPGD) | Tracking Planar GEMs with annular shape surrounding | 1.1 < 7 < 2.0 >
£ the Si-disks F
2 [dricn PID Dual RICH with aerogel and gas 12<n<37 3<p<60(K/m) 2
3 0.85 < p < 15 (e/7) 2
g MPGD Layer Tracking Planar uRWell 14<n<375 z
& | pECal e/m Calorimetry W-Powder,/SciFi calorimeter 12<n<40
pHCal Hadron Calorimetry Fe/Sci sandwich 1<n<40
Si Vertex-Tracker Tracking and Vertexing 3-layer MAPS 22<n<22
i Barrel-Tracker Tracking 2-layer MAPS ~105<n<105
bToF PID and Tracking ACLGAD ~105<7 <105 1.3 (K/7)
w pr>023GeV/c @3T | p <04 (e/)
_ | Barrel Tracker (MPGD) | Tracking 4 (2+2) layer cylindrical Micromegas 1.05 <7< 1.05
£ [hepiRC PID DIRC with focusing elements and fine pixel | —1.64 < 7 < 1.25 p <65 (K/m)
a readout pr > 045 GeV/c @3T | p<12 (e/n)
bECal &/m Calorimetry & Tracking | Hybrid with Astropix imaging layers alternated | —15 < n < 1.2
with Pb/SciFi layers followed by a set of
Pb/Scifi layers
bHCal Hadron Calorimetry Fe/Sci sandwich -10<n<10
Si-Tracker Disks Tracking 5 disks of MAPS 11>n>-38 =
B | Tracking Rings (MPGD) | Tracking Planar GEMs with annular shape surrounding | —1.1> 7> —18 »
£ the Si-disks bt
K 3
& [ pRICH PID Proximity focusing RICH with aerogel —15>7>-38 3<p<1l(K/m) B
® 0.85 < p < 3 (e/m) ol
g
£ [inner nECal e/m Calorimetry PLWO,4 —23>n>-40 z
& [ Outer nECal e/m Calorimetry SciGlass ~15>n>-23 3
nHCal Hadron Calorimetry Fe/Sci sandwich —1>n>—4 %
c
=l
m
&
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Tracker

@ Silicon sensors:

o 3 vertex and 2 barrel layers
o MAPS sensors similar to ALICE ITS3 upgrade

@ 4 Micromegas barrel trackers
o GEM disks: 5 e-going (backward) and 6 p-going (forward)
o Large forward pRWell detector
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Figure 2.4: ATHENA tracking performance of generated pions compared to the Yellow Report requirements
(dashed lines) for selected n bins. Top row: momentum resolutions versus momentum. Bottom row: Transverse

DCA performance versus momentum (FullSim).
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Table 2.2: Comparison of performance and Yellow Report requirement parameterizations for relative momentum
and transverse pointing resolutions as a function of momentum for the ATHENA baseline tracking system.

ormance vs. requi

ments

Momentum resolution o (p)/p

Transverse pointing resolution o(DCAT)

Performance

Requirements

Performance

Requirements

-35<n<-25

~0.04% x pd 1.5%

~0.1% x p & 0.5%

~80/pr @10 um

~30/pr & 50 um

25<7n<-10

~0.01% x p&® 0.5%

~0.05% x p & 0.5%

~50/pr @5 um

~ 30/pr & 20 um

10 <n< 10

~0.05% x p & 0.4%

~0.05% x p & 0.5%

~30/pr &5 um

~20/pr &5 pum

10<n <25

~0.01% x p® 0.5%

~0.05% x p& 1%

~50/pr &5 um

~ 30/pr &20 um

25<n <35

~0.02% % p & 1.5%

~0.1% x p&2%

~ 80/pr & 10 um

~ 30/pr & 50 um
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Figure 2.10: a) Configuration of the barrel ToF. b) Anticipated impact from the spatial hit from the ToF system
on the tracking performance, with improved baseline performance at higher momenta. c) Shows that ToF more
than satisfies the PID requirements in the momentum range below the DIRC kaon threshold (0.47 GeV/c),
thereby filling in the PID to 230 MeV/c. d) Separation power in number of o separation (FullSim).

o AC-coupled LGAD (low-gain avalanche diodes) TOF
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Figure 2.9: a) Configuration of the DIRC. b) Superposition of the distribution of photon hits from 6 GeV/c
identical pions. c) Number of detected photoelectrons as a function of polar angle. d) Separation power at the
maximum momentum requirement stated in the Yellow Report. Results from a stand-alone GEANT4 simulation.

@ high performance DIRC (detection of internally reflected cherenkov light)
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Barrel E-M Calorimeter
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Figure 2.6: Left: The barrel electromagnetic calorimeter as included in detector simulations. The inner radius of
the barrel is 103 cm. The first (closest to the beam) 6 layers are imaging layers. The insets show the structure
of the Si imaging layers (bottom) and the 1.59 cm thick Pb/SciFi (top). The imaging layers are followed by
a thicker Pb/ScFi section, for a total thickness (not including the support structure) of 40 cm. Right: Energy
deposited in pixels in the imaging calorimeter demonstrating clean seperation of the two clusters for a 15 GeV
70, The red crosses mark the reconstructed clusters centers (FullSim).

@ Hybrid Pb/SciFi design and imaging with monolithic silicon sensors (AstroPix)
o 6 layers of silicon sensors
o 5 layers of Pb/SciFi (1.59 cm) + thick layer of Pb/SciFi
o Outer layer causes 70% of neutrons to shower, which helps identify neutral
hadrons
o Hybrid+imaging calorimeter allows use of machine learning techniques for patter
recognition of showers in 3D
o Enables muon identification

25.4.2022 s i FNSPE CTU Prague



Barrel E-M Calorimeter performance
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Figure 2.7: Left: The pion rejection power of ATHENA bECal (red solid line) compared with other technologies
listed in the EIC Yellow Report. The rejection power of the ATHENA bECal is obtained from the analysis
described in the Supplemental Material utilizing the E /p method and pattern matching, while the other rejection
powers are determined from the E /p method [3] only. All the curves, including simulations and data, are obtained
for the standalone calorimeter, i.e., no other materials are placed in front of the calorimeter and no magnetic field
is involved. The effects of material and the magnetic field are discussed further in the supplemental material.
Right: The merging probability of the two «s from 7° decay in the barrel region at r = 1.03 m. For ATHENA
bECal, 60 of its spatial resolution (2.4/v/E @ 1.3 mm) is used to estimate the merging probability, since its
pixel size (0.5 mm) is much smaller than the cluster profile. For the other technologies, the cell size is used to
estimate the probability [3].
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Barrel E-M Calorimeter performance

Table 2.3: Expected bECal detector performance.

Energy Resolution 5.5%/VE @ 1%

e/ separation > 99.8% pion rejection with 95% electron efficiency at p > 0.1 GeV/cP.
E)in <100 MeV©

Spatial Resolution Cluster position resolution for 5 GeV photons at normal incident angle is below

o = 2mm (at the surface of the stave r = 103cm) or 0.12°. For comparison,
the minimal opening angle of photons from 7 — v at 15GeV is ~ 1.05°
(about 19 mm — 37 pixels — of separation at r = 103 cm).

“Based on the photon simulations with —0.5 < 7 < 0.5 and 0 < ¢ < 2m. The constant term does not include calibration effects.
PBased on simulation for a standalone bECal, see Fig. |2.7/for detailed results.

“Based on simulations, 100 MeV photons leave an energy deposit of ~ 15 MeV in SciFi layers and of ~ 1 MeV in the imaging
layers. This simulation includes digitization with electronics noise and a noise suppression cut.

L. Kosarzewski FNSPE CTU Pra, 13




External Structure
Gables & Cooling

poBior for Glass Flange of

/ Beam Pipe
Glass / Structure for
\ / Fastening

PCB for

Threaded

Junetion Resolution of inner [crystal] and outer [sci-glass] nECal
Structure
.
~ 6 o 3.01
caves CURNEES .. BN 00 S L=103@~—  [sci-glass]
for PWO ——___ E NG
o 1.08 _1.92
— Toise- @
E VE E
Additional Y I — =13 [crystal]
Cooling X
Em
PWO ——— o 3

Gooling E
Grid C
Structure 2
Glass L
Cooling U v sci-glass
4 r e crystal
T /] e P TS P T
Tails / coa bbb b b T b bl
Glass o o O e e 0 iz 4 6 s
Crystals ng
Crystats E (GeV)

Figure 2.5: Left: The mechanical design of hybrid crystal/glass calorimeter nECal. Right: Expected nECal
performance for the stand alone calorimeter, the energy resolution curves for inner PbWOj, (~ 22 Xg) and outer
SciGlass (~ 20 Xg) regions (FullSim).

o Located in the negative e-going (backward) direction
o Inner part: PbWo4 crystals
o Outer part: SciGlass
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Figure 2.8: Panel a) shows the layout of the dRICH radiators, mirror, and SiPM focal planes. Panel b)
shows the superposition of hits from 1000 events with identical primary particles. This effectively captures ring
shape (aerogel-large, gas-small), Rayleigh scattering, optical aberration, multiple scattering, tracking resolution,
chromaticity, and signal-to-noise effects in one image. Panel c) shows the number of photoelectrons per single
ring vs 7, and thereby illustrates the acceptance range. Panels d) and e) demonstrate the PID separation for

em and K. The performance meets the Yellow Report specification. Aerogel performance is indicated in blue
and C>Fe in red (FullSim).

o Dual-radiator RICH at forward rapidity (p-going)
o Good e/ separation
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detection - barrel
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o Information from Barrel E-M and hadronic calorimeters allows to separate p/m
o Muons with p > 1.5 GeV /c reach BHCal

@ For p < 1.5 GeV/c they curl inside BECal

Better performance if other PID detectors included

L. Kosarzewski FNSPE CTU Pragi
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Muon detection - barrel

[ Energy reconstructed in BECAL |
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@ 1 leave MIP signal in BECal
@ u selection:

o MIP signal in BECal (95% efficiency)
o hits in each BHCal layers
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detection - barrel
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o u leave MIP signal in BECal
@ 4 selection:

o MIP signal in BECal (95% efficiency)
o hits in each BHCal layers
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Muon detection - barrel wit

Example of muons and pions at p = 0.5 GeV/c atn = (-1,1)
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Comparing the two plots demonstrates the power of including the imaging layers:
- they enhance p/n separation at low momenta

@ Muon identification using information from imaging layers and Pb/SciFi of BECal
and machine learning

o 4 parameters for each hit: n, ¢, E, R
o 3 layers convolutional neural network and 3 layers perceptron
o 95% efficiency
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Muon detection - forward (hadron endcap)
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@ Muon selection possible with pECal and pHCal information

o MIP-like signal in pECal
o Number of hits along the tracks consistent with no shower

@ 90% efficiency, only few % pion contamination
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Quarkonium reconstruction
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@ Upsilon states well separated in the dielectron channel

@ Low bremsstrahlung tails thanks to low-mass trackers and beampipe
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Near-threshold Upsilon p

ion

=ep10x100 GeV Y (15)—e'e"
--ep 18x275 GeV = =
Proj. L=100 fo" $¢#***
5 102} Q’<1GeV *##
2 4+
§ +* § 14<W<18 GeV
(%) - +10.5<W<14 GeV
ol < F ---eStarlight
= -+ g - LAGER, W=15GeV
%: 10k ?027 ', o 10x100Gev
v Si0°
L o e 3
~(t-tmin) (GeV?)
10,A Il Il 1 | i | 1 | |
10 11 12 13 14 15 16 17 18 19 20

W (GeV)

0.30 -
GlueX Jiy
025 { t
020 ] J
) 1 b

015

§ EICY 10 on 100 GeV (10 fb™')

{ EIC Y 10 on 100 GeV (100 fb~")
010 |attice Calculation, F. He et al. (2021)

3 W}f’uj5 6 789 wir 20 30

W (GeV)

Figure 3.19: Left: The projected uncertainty of total and differential (insert panel) cross section of T(1S) near
threshold for photo-production and electro-production (@2 < 1 GeV?) in e+p collisions via the di-electron decay
channel. Two model predictions [58,101] of the near threshold differential do/dt are also shown (FullSim).
Right: The trace anomaly contribution to the proton mass in Ji's decomposition according to [104}105] and
references therein. Green and red points correspond to 10 fb~1 and 100 fb~! integrated luminosity, respectively,
and are offset from each other. The band is the result of a recent lattice QCD calculation [106] (FullSim).

o Needs measurement of electron and/or proton momentum
o Projections both for 10 fb~1 and 100 fb—!
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@ Good performance for Upsilon states separation
@ Muon detection possible with ECal+HCal
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BACKUP
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[ Lepton Calorimeter
[ Hadron Calorimeter
[ Barrel Calorimeter
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@ superconducting magnet
@ 3T solenoidal magnetic field

o lower settings possible
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Kinematic coverage
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Figure 3.1: Variation of the estimated ATHENA resolution on the kinematic variable, y, with x and Q2, for the
example case of 18 GeV electrons colliding with 275 GeV protons. At each point in the kinematic plane, the
best performing reconstruction method is chosen and indicated by the color of the corresponding marker, while
the size of the marker indicates the magnitude of the resolution obtained (FullSim).
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Kinematic coverage
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Figure 3.2: Kinematic coverage of simulated ATHENA data for EIC running at the largest and smallest center-
of-mass energies. The positions in the kinematic plane of simulated measurements in the deep-inelastic region

with selection requirements: Q2 > 1 GeV? and 0.01 < y < 0.95 (FullSim).
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ECal perform

Baseline ATHENA ECal
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- Cuts set at 90%, 95%, 98% electron
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- Background hits not included.
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FastSim results; below 10 indicated by downward arrows
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